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ABSTRACT. Conforming piecewise polynomial spaces with respect to cubic meshes are constructed
for the Stokes problem in arbitrary dimensions yielding exactly divergence—free velocity approxima-
tions. The derivation of the finite element pair is motivated by a smooth de Rham complex that is
well-suited for the Stokes problem. We derive the stability and convergence properties of the new
elements as well as the construction of reduced elements with less global unknowns.

1. Introduction

This article constructs two families of stable and conforming finite element pairs for the Stokes
problem with respect to cubic meshes in arbitrary dimension. In particular, we shall construct finite
element spaces X, C H'(Q) and Y, C L?() satisfying the discrete inf-sup (or Ladyzenskaja—
Babuska—Brezzi) condition

divv)qdx
(11) Blallie < sup Jaldivelide
ve X, \{0} HvHHl(Q)

and, in addition, satisfy the conforming property
(1.2) Zp :={veXy: /(divv)qdm =0,YeY,}CZ:={wec H(Q): divw =0}
Q

Condition (1.2) states that the discretely divergence—free subspace is in fact divergence—free pointwise.
As a result, the computed velocity approximation of the Stokes problem is exactly solenoidal.

It is well-known (cf. [5]) that the discrete Stokes problem based on the velocity—pressure formulation
is well-posed if and only if the discrete inf-sup condition (1.1) is satisfied. It implies that the divergence
operator acting on the velocity space X}, has a surjective-type property with a bounded right inverse;
in short, the discrete inf-sup condition implies the inclusion Y, C Ppdiv X}, where div X}, is the
image X, under the divergence operator and Py, is the L?-projection onto Y},. If this condition is
satisfied, then the discrete velocity approximation satisfies the quasi—optimal estimate

(1.3) o~ wnllare oy < O inf flu— vl +v" inf p—dllixo).

where C' > 0 is a constant with scaling 37! and v denotes the viscosity of the fluid. Numerical
experiments in, e.g., [16] show that the scaling in (1.3) is sharp, and therefore the error may deteriorate
for small viscosity—values.

The conforming property (1.2) on the other hand implies the reverse relation div X, C Y}, and
thus, finite element pairs satisfying both conditions (1.1)—(1.2) satisfy the equality div X;, = Y},. In
this setting, the velocity approximation satisfies the decoupled and r—independent error estimate

lw —unllmr (o) < Cvien)gh lw = v a1 (),

where again, C' > 0 scales like 371. Thus, finite element pairs satisfying both conditions (1.1)—(1.2)
have enhanced stability properties and are robust with the problem’s parameters.

This work is supported in part by the National Science Foundation grant DMS-1417980 and the Alfred Sloan
Foundation.
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The construction of our finite element pairs is motivated by a smooth de Rham complex (or Stokes
complex [11]). In two dimensions, this complex is given by the sequence

curl

(1.4) R—H?*(Q) — HY(Q) A L*(2)—0.

If the domain is simply connected, then this complex is exact, i.e., the range of each map is the kernel
of the succeeding map. The exactness property implies that the divergence operator is surjective
from H'(Q) onto L?(2). Along with an estimate of the right-inverse, this result implies the inf-
sup condition in the continuous setting. In n—dimensions we view functions in H'(Q) and L?*(Q)
as (n — 1)—forms and n—forms, respectively, via their proxies. In particular, if v € H(Q) with
v= (oM 0@ 0™ and ¢ € L*(Q), then we make the identifications

n
UNZU(j)dxl/\--~/\dxj/\-~-d$", g~ qdzt A---dz™.
j=1

Let d denote the exterior derivative and set HA’(Q) to be the space of L? ¢-forms with exterior
derivatives in L?. Then the n-dimensional de Rham complex with minimal L? smoothness is [1, 2]

d d d d
R—HAY(Q) — -+ — HA"2(Q) — HA"1(Q) — HA"(Q)—0.

The Stokes complex is obtained by simply imposing additional regularity in the second-to—last and
third—to—last spaces is the sequence:

d d d d
(1.5) R—HAY(Q) — -+ — HA"2(Q) — H'A" Q) — HA™(2)—0,

where H'A"~1(Q) denotes the space of (n — 1)-forms with coefficients in H'(Q2), and HA"2(Q) :=
{we HA"2(Q) : dw € H*A"~(Q)}. This complex is the guiding tool to develop stable finite element
Stokes pairs that yield divergence—free velocity approximations. Namely, starting with a HA%(Q)-
conforming finite element space, we follow the sequence (1.5) to deduce properties of the finite element
pair Xh X Yh.

The development of conforming finite element pairs yielding divergence—free approximations was
initiated by Scott and Vogelius in [21]. Here, the authors showed that the pair P, — Tzc_l is stable in
two dimensions on simplicial triangulations provided the polynomial degree satisfies k > 4 and if the
triangulation does not contain singular vertices. These results have since been expanded in [14, 11].
Similar to the simplicial case, the construction of Stokes pairs yielding divergence—free approximations
on Cartesian meshes is mostly limited to the two dimensional case [4, 24, 15]. A noticeable exception
is [8, 7, 9, 10], where the authors developed stable spaces yielding divergence—{ree approximations
in two and three dimensions within an isogeometric framework. In terms of global regularity, the
finite element spaces developed in this paper are in between the H (div ; Q)-conforming Nedelec finite
element spaces [18] and these isogeometric spaces. Due to the differences between our elements and
those given in [8, 7], and due to a lack of a Fortin operator, new tools are developed to prove the
necessary inf-sup condition. In particular we first derive a local inf-sup condition with imposed
boundary conditions and then translate this result to the global level by exploiting the element’s
degrees of freedom.

The rest of the paper is organized as follows. In Section 2 we provide the notation that is used
throughout the paper and state some preliminary results. We then state the local velocity and pressure
spaces and their degrees of freedom in Section 3. In addition, we derive some local characterizations
of the divergence operator acting on polynomial spaces. In Section 4 we define the global finite
element spaces and derive the desired inf-sup condition. In Section 5 we construct finite element pairs
with similar approximation and stability properties, but with less unknowns. Finally, we apply these
elements to the Stokes problem in Section 6 and prove error estimates in the energy norm.
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2. Preliminaries

2.1. Notation. Let €2 be an open bounded domain in R"™ with boundary parallel to the coordinate
axes. We denote by T}, a conforming triangulation of {2 consisting of cubical elements {Q}ges, such
that the boundary of each element is parallel to the coordinate axes. For an element Q € T}, we
denote by hq its diameter and by O, (Q) the set of faces of ) with dimension s. In particular, O0,(Q)
denotes the set of faces where (n — s) coordinates are one of two constant values. Consequently, the
cardinality of this set is [J,(Q)| = 2"~*("). We denote by DS)(Q) the set of s—dimensional faces of

@ where x; is constant and by Ijgi)(Q) the set of s—dimensional faces of () where z; is not constant;
the cardinality of these sets are ||:]§Z)(Q)\ = 2”‘3(";1) and |ﬂgl)(Q)| = 27_3 (Z:ll), respectively, for
any ¢. The analogous global sets with respect to T, are denoted by [y, DS) and ﬂé’).

We denote by Pi(D) := Pp, ky,... .k, (D), the space of polynomials on D C R" of degree at most k;

in z;, and set Qi (D) := Py(D) with k; = k for all i. We further denote the vector-valued space
9, (Q) ={ve (%(@)": vV € P(Q) with k; = k and k; =k — 1 for i # j}.

For example Q; (Q) = Pk r—1(Q) xPr-1,1(Q) and ;. (Q) = P k1.6 -1(Q) X Ph—1k k-1 X Pr—1,-1.1(Q)
in two and three dimensions, respectively (cf. [18]). The dimensions of these spaces are dim Qx(Q) =
(k+1)" and dim Q; (Q) = n(k + 1)k" 1.

Lemma 2.1 ([3]). A function ¢ € Qi(Q) is uniquely determined by the values
(2.1) /qﬂ K EQ o(S), Sel(Q), s=0.1,....n,
s

where fs q with S € Oy (Q) is understood to be the evaluation of q at the vertex S.

For an element Q € T}, with face S € T4(Q) (1 < s < n), we denote by bg the bubble function with
respect to S. In particular, bg € Q2(Q) is a quadratic polynomial in each variable that vanishes on 9.5
and takes the value one at the center of S. If S € [,,(Q) = {®@}, then we denote the bubble function
by bg. We remark that Vbg # 0 on 0S; however, the gradient of the bubble function vanishes on
(s — 2)-dimensional sub—faces of S.

3. The Local Stokes Elements

In this section we define the local velocity and pressure finite elements for the Stokes problem. In
particular, we define the local spaces of these elements and the unisolvent sets of degrees of freedom.
In addition, we derive a characterization of the divergence acting on the local velocity space, crucial
for the stability analysis of the global spaces defined in the subsequent section.

3.1. Local velocity finite element spaces on cubic meshes in R™. In this section we define the
local velocity space and degrees of freedom. First, we require the following technical result.

Lemma 3.1. Suppose v = (v 0@ ... v™) € Q7 (Q) satisfies

) ov@® )
(3.1a) /v(’) -0, / Vo0 §edfQ), s=0,1,...,m,
S S

Zq

for all1 <i<n and for some 0 <m <n—2. Then v =0, Bv(i)/(?xi =00on04(Q) forall1<i<n
and 0 < s <m. If in addition,

(3.1b) /Sv(i) -0  Se0? (@),

then v =0 on O,,11(Q).
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Proof. The proof is by induction on m. The case m = 0 is clearly true since Déi)(Q) = o(Q) for all
i=1,2,...,n.

Assume that v and aa”;) vanish on all S € O0,,(Q) for some 0 <m <n —3 and all 1 <i <n. Let

S € 0,,41(Q). By the induction hypothesis, we have v = 0 and 85’;) =0on 9S forall 1 <i < n.
If ; is constant on S, i.e., S € Dg)H(Q), then v\)|g, 0w /0z,|s € Qa(S). Therefore we may write
v = bgg) and 909 /9z ;|5 = bgp?) for some ¢V, pl9) € R. By (3.1a) we conclude that both v(?)
and Ov) /9z; vanish on S.

IfS e ﬂgfl)ﬂ(Q) then there exists exactly two m-—dimensional faces S, S C 95 such that x;

is constant on S and S®. Denote by Vg and Vg the surface gradient of S and S(i), respec-

tively. Then, with the correct orientation, we have Vg(-) = (Vg (+), %). Therefore, since v\) and

J

Ov9) [0z ; vanish on S and S, we conclude that Vv =0 on S, S@). Since v\ |g € Q3(9),
and vanishes on 95, we may write 9\/)|s = bgq for some ¢ € Q;(S). Consequently,

(3.2) 0= VSU(j)|S(i) = qVgbs|g.
We then conclude from (3.2) that ¢ = 0 on S®, and therefore, since ¢ € Q1(S), ¢ = 0. Thus v =0

and Ov) /9z; = 0 on S. The first assertion of the lemma now follows from induction. The second
assertion follows from the exact same arguments. O

The local velocity space and degrees of freedom are given in the next lemma.

Lemma 3.2. Any function v € Q5 (Q) is uniquely determined by the values (cf. Figure 1)

. (1) )
(3.3) /v“), ‘5;; SedQ), s=0,1,...,n—2,
S S i
(3.3b) /S o0 se0?,(Q).
(3.3¢) /Q'v ‘K ke (Q)

fori=1,2,...,n.

Proof. The number of degrees of freedom given in (3.3) equals
n-2 , 2 n—1
2n Z I09(Q)| + n\DS)_l(Q)\ +dimQ; (Q) = 2n Z 2”5( ) +2n+2n
s=0 s=0 s

n—1 n—l
—4 [—1 gn—1-s } 4
a[-1+ 2] an

s=0

=4n3""' = 95 (Q).

by the binomial theorem. Thus, to show that (3.3) form a unisolvent set over Q3 (Q), it suffices to
show that a function v € Q5 (Q) vanishes on (3.3) if and only if v = 0.

If v vanishes on (3.3), then 9v()/dz; = 0 on 0, _»(Q) and v = 0 on [,,_1(Q) by Lemma 3.1.
Therefore v = bgq for some g € Q7 (Q). Finally, the last set of degrees of freedom (3.3¢) implies
v=0. ]
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FIGURE 1. Degrees of freedom of the velocity (left) and pressure (right) elements in
two and three dimensions.

Remark 3.3. For S € 0,(Q) let {ng)}y;f be an orthonormal set of vectors orthogonal to the tangent

space of S. We may then write the degrees of freedom (3.3a)—(3.3b) as

(3.4a) /v.ng>, / 31(’],) nd)  Sel(Q), s=01,...,n—2, j=12,...,n—s,
s s Ong

(3.4b) /'v ‘ng Sel,—1(Q).
S

We shall use the (equivalent) degrees of freedom (3.4), (3.3¢) in Section 4 below.

3.2. Local pressure finite element spaces on cubic meshes in R”. The local pressure space
consists of tensor—product quadratic polynomials, namely Q5(Q). By Lemma 2.1 any function ¢ €
Q5(Q) is uniquely determined by the values

(3.5) /q, Seld(Q), s=0,1,...,n.
s
Consequently, the subspace
Qs (Q) :={q € 22(Q) : ¢ vanishes on all (n — 2)—dimensional faces of Q},

has dimension 2n + 1. Namely, a function ¢ € éQ(Q) is uniquely determined by its average over each
(n — 1)—dimensional face, and its average over (). This conversation also leads to the following result:

Lemma 3.4. Any function q € Q3(Q) is uniquely determined by the values
/q Sels(Q), s=0,1,...,n—2,
5

/qn KEQQ(Q).
Q

3.3. Local characterizations of the divergence.

Lemma 3.5. Let v € Q5 (Q). Suppose that dive = 0 and that v vanishes on the boundary of Q.
Then v = 0.
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Proof. Let © € A"~ 1(Q) denote the (n — 1)-form with vector proxy v = (vV), v ... v™);ie.,
o= vWdet A Adai A da”
i=1

where the hat indicates a suppressed argument. For a vector—valued function k, we also denote by
k € AY(Q) the one—form given by

K= i kD dxt.
i=1

The divergence—free condition on v is equivalent to dv = 0, where d denotes the exterior derivative.
Moreover the boundary condition v|pg = 0 implies that the trace of © vanishes on 0Q. Therefore

there exists ¢ € HA" 2(Q) such that © = de [1, 2]. Here, HA"2(Q) denotes the space of L2(Q)
(n — 2)—forms with exterior derivative in L?(Q) and vanishing trace. By Stokes Theorem, we have for

any Kk € Q1 (Q)
(3.6) /Qv-n:/Qv/\n:/Qdcp/\n:(—1)"‘1/ng/\dn:O.

The last equality is due to the identity dk = 0 for k € Q7 (Q). Indeed, we have

dk = i i 6;:) da® A da? = i i 6;;) dz® A dz? =0
k k

k=1 j=1 j=1j=1
J#k
since k) is constant in xy, for j # k. By (3.6) and Lemma 3.2 we conclude that v = 0. g

Remark 3.6. An alternative proof of Lemma 3.5 without the direct use of differential forms is given
as follows. If v € Q5 (Q) N H(Q) then v = bgk for some k € Q7 (Q). If divv = 0, then by the
chain rule, Vbg - k 4+ bodivk = 0. Restricting this identity to the boundary of ), we conclude that
K-Vbglag = 0. In particular k- Vbg|s = 0 for all S € O,,_1(Q). However, a simple calculation shows
Vbg|s = asngbg for some non-zero constant ag. Therefore k - n|sgg = 0. Due to this identity and
the inclusion k € Q7 (Q) we conclude from [3, pg. 9] that kK = 0.

Theorem 3.7. Define the spaces
2,(Q): =2 @QNH}Q),  2(Q):=9%(Q NLQ).

Then the divergence operator is a bijection from Qg (Q) to Qx(Q). Moreover, there holds vl @) <
C|\divv|| L2y for allv € Q. (Q) with C > 0 independent of v and the size of Q.

Proof. By the definitions of Q; (Q) and Q5(Q) and Stokes Theorem, we see that div Q;(Q) C 05(Q).
Therefore, in light of Lemma 3.5, it suffices to show that dim (div Q;(Q)) = dim 95(Q) to prove the
bijective property.
By Lemmas 3.2 and 3.5 we have
dim (div Q3 (Q)) = dimQ, (Q) = dim Q; (Q) = 2n.
On the other hand, we have by Lemma 3.4,
dim 95(Q) = dim 95(Q) — 1 = 2n.

Therefore dim (div Q. (Q)) = dim 0,5(Q), and therefore div : Q4 (Q) — 05(Q) is a bijection.

Finally, let F : Q — Q be an affine mapping, where Q = (0,1)™ is the reference element. In
particular, F(z) = BZ+b, where b € R™ and B € R"*" is a diagonal matrix with entries proportional
to hg. Define ¥ : Q — R™ by the Piola transform (&) = adj(B)v(F(#)) € Q3 (Q), where adj(B) =
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det(B)B~! denotes the adjugate matrix of B. We then have div (%) = det(B)divv(z) with x = F(&)
[17]. Therefore by Lemma 3.5, scaling arguments and the equivalence of norms in a finite dimensional
setting, we obtain

—n/2 ~ /21 7 .
ol i@y < Chg" 2 119] 1) < Chg" 2 1div o]l 126y < ClidivollLa(q).-

4. The Global Stokes Finite Element Spaces and Stability Properties

4.1. Global Finite Element Spaces without Imposed Boundary Conditions. Lemmas 3.2
and 3.4 induce the following global finite element spaces without boundary conditions:

Vi:={ve H(Q): vlpecQ5(Q)VQ € Ty, dv¥/dz, is continuous across n — 2 dimensional faces},
Wiy :={qe L*Q): qlo € Q2(Q) VQ € Ty, ¢ is continuous across n — 2 dimensional faces}.

The goal of this section is to derive the necessary inf-sup condition needed for the well-posedness of
the discrete Stokes problem. First we establish a preliminary result.

Lemma 4.1. For any g € W}, there exists v1 € V}, such that the restriction of (¢ — divvy) to Q is
in Qa(Q) for all Q € Tp,. Moreover, ||v1] g1y < Cllqllz2(q)-

Proof. Let w € H'(Q) satisfy divew = ¢ and [|w||g1o) < Cllgllz2() [13], and denote by wj, the
Scott-Zhang interpolant of wj, with wy|g € Q1(Q) = [Q1(Q)]™ [23]. The error of the interpolant
satisfies

||’UJ—’LUhHHm(Q) < Ch?QimellHl(wQ) ’n’L:O,l7

where wg denotes the patch of elements that touch Q.

We then uniquely define the function v; € V}, by the following iterative process. On vertices, we
specify the conditions (1 <i < n)
81)5”
al’i

1

(4.1a) v1(S) = wi(S), ()= —q($) el

Now suppose that the values of

p) ,
/v1 ng)7 / vl)-ng) Sels, 7=1,2,....,n—3s
s S@n

have been specified for s =0,1,...,m for some 0 < m < n — 3. By Lemma 3.1 and Remark 3.3, this
implies that the values of v are well defined on S € O,,, and therefore fs 8'{}) t(Sl) (1<i<m+1)

is well-defined on S € O,,,+1 (by the Fundamental Theorem of Calculus). We then construct v; such
that

) _ / () / v G) _ / Z ovi ) g
v-ng = wp Mg, —-n € U1,
/s s s s s 677,59]) s n—m-—1 8t( i ts ) i

for j=1,2,...,n —m — 1. Continuing this process up to m =n — 3, we conclude from Lemma 3.1,
Remark 3.3, and Lemma A.1 that

(4.1b) /v1 ng) /wh nS, /divvlz/q Sels, 0<s<n-—2.
s s

Finally, the last set of conditions imposed on v, are
(4.1c) / v -Ng = / w-Nng Sed,_1,
(4.1d) / vy - n—/ wp, - K Kk €97(Q), Q€T
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By Lemma 3.2 and Remark 3.3, this construction uniquely defines vy € V},. Furthermore, the second
identity in (4.1b) implies divv; = ¢ on (n —2)—dimensional faces (cf. Lemma 2.1). By Stokes theorem

and (4.1c) we also have
/ dive; = / divw = / vQ € Ty.

Consequently, (¢ — divur)|g € 05(Q) for all Q € Ty.
It remains to show the stability estimate ||v1]| 1) < [lg||z2(q). Since (3.3c),(3.4) forms a unisolvent

set over Q3 (Q), and since v; — wy|g € Q3 (Q), we have by scaling

n—2
8'0 . ow N2
2 n—2s 1 () h (4)
12wl =Y Y S| [ (2 - 20
s=0 Sel.(Q) j=1 S

+ oY, kg

Sel,-1(Q)

SIDIN

/S(vl—wh)-ns‘z
[+5 ¥ S

Own (5|2
/ (J) s ’

s=0 Sel.(Q) s=0 5els(Q) 7=1
n—2 s
_ ovr 5|2
DIl R
s=0 i=1 s 6tfg)
2
£ 30 g [ )

Seln1(Q)

For a face S € 05(Q) (1 < s < n—2) and unit tangent vector tg) (1<i<s),let 51,52 € Os-1(Q) be
the (unique) (s — 1)—dimensional faces such that tg) = ingll) and t(sl) = in(SJ;) for some 1 < j1, 72 <
(n — s+ 1). Then by the Fundamental Theorem of Calculus and by (4.1b), we have

a’U i i
—(1.1) -tg)::t/ vl-n(sjl):lz/ vy - ng”)
S 8ts S1 Sa

=+ | wy- gl):l:/ wy, - ng;) _/ awﬁ -tg).
Sa

S1 S 6t(sl)
P 12
/ |
s ong

Applying this identity to (4.2) and using scaling arguments yields

@3) o - wnlhg <O > “| [ S > Zh" .

s=0 Sel0,( s=0 Sel,(
n—2 s ) awh @) 2 2
+ZZh” |5 & X | [ w-w)n
s=0 i=1 S Sel,_1(Q) o

< Cllallz () + lwnllng) + hg' llw = wallia o)) < Cllwli -

Summing over Q € Ty, we conclude that ||v1]| g1 (o) < C[|lwnl a1 + |l r1(0)] < Cllwl|lg(g) <
CllallL2@)-

Theorem 4.2. For any q € W}, there exists v € V}, such that divv = q and ||v|| g1y < Cllqllr2(0)-
Consequently, the inf-sup condition

Jo(divw)g
sup 120 Cllgllzz) Vg € Wi
veVy\{0} ||U||H1(Q)

is satisfied.
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Proof. For given ¢ € Wy, Lemma 4.1 guarantees the existence of v1 € Vj, satisfying (¢ — diver)|g €
Q(Q) for all Q@ € Ty, and |lv1]|g1) < Cllqllr2()- By Theorem 3.7, for each Q € T}, there exists

V2 € Q. such that div vy, = q—divwy and [|va gl g1 (@) < Cllg—divwvi||L2(g). Define vy such that
vs|lg = v and set v := vy + vo. Note that the condition vs]g € Q3 (Q) N HL(Q) for all Q € Ty,
implies Vug|g = 0on all S € O with 0 < s < n—2. Therefore, v € V}, with divv = divv;+dives = ¢,
and

vl < l|villa @) + lv2llar @) < Clvillai @) + llg — divor||lz2e) < Cllllzz(o)-
O

4.2. Global Finite Element Spaces with Imposed Boundary Conditions. As pointed out in
[11], imposing boundary conditions of finite element spaces while preserving the surjectivity of the
divergence is a non—trivial issue. For example, if v is a globally continuous function on €2 and vanishes
on 0f), then the derivatives of v vanish at corners (n = 2) and edges (n = 3) of 9. Consequently,
the divergence operator is not surjective from Vj, N H}(Q) to W), N L3(£2), and therefore the inf-sup
condition is lost. More precisely, if we denote by (0% the set of s—dimensional singular faces of 952,
then the gradient of a function v € Vj, N HE(£2) vanishes on 9§ for all 0 < s < n — 2. Here, an
s—dimensional singular face of 9f2 is a hyperplane of codimension n — s that is the intersection of n — s
non—parallel (n — 1) dimensional hyperplanes of 0S).

On simplicial meshes, this issue may be alleviated by imposing mesh and regularity conditions
locally at the boundary [11, Section 3.1]. On cubic meshes, such procedures are not applicable. For
example, in two dimensions, there will always be elements in T3, that have at least two boundary edges.
Instead, we shall impose the weaker boundary condition v - n = 0 in the finite element space and
impose the tangental boundary conditions weakly in the finite element method via Nitsche’s method
[20]. Thus, we consider the finite element spaces

‘O/h:{’UGVhZ 'U~’n|ag2=0},
Wh =W,nN Lg(Q)
Let O be the set of (open) s—dimensional faces such that the intersection of a face in 0! with 99 is

empty, and let OF = O,\OZ be the set of boundary s—dimensional faces. We then define the discrete
H'-type norm

1
(4.4) ol = 190l + > (G loltacs +hslov/omsilias)).
SedB
We now prove the analogue of Theorem 4.2 with boundary conditions.

Theorem 4.3. The inf-sup condition

(4.5) sup 7f9(div vla

> Cllgllr2@) Vg€ Wa
veVi\{0} ||U||h

is satisfied for a constant C > 0 independent of h.

Proof. The proof is near identical to the proof of Theorem 4.2. Namely, for given q € Vth, we use the
degrees of freedom of V}, to construct a v € Vj, such that dive = ¢ and ||[v||g1(0) < Cllq|/z2(q) with
C > 0 independent of h. This result will imply the inf-sup condition (4.5). We split up the proof into
four steps.

Step 1: For q € Wy let w € H}(Q) satisfy divw = ¢ and lwllmi) < Cllgllzz) [13]. Set
wy, to be the Scott—Zhang interpolant of w such that wy|g € Q1(Q) on each @ € Tj. Note that
wy, € H}(Q); in particular, wy|s = 0 for all boundary faces S € O (0 < s < n —1). We then
construct v; € Vj, by the exact same procedure as in the proof of Lemma 4.1, i.e., v; is uniquely
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determined by conditions (4.1). This construction then leads to the property (¢ — divvy)|g € 05(Q)
for all @ € Tp, and H'U]_HH](Q) < CHqHLz(Q).

Step 2: We now establish that v; € Vj,. Let S € OB |, and let [0,(S) with 0 < s < n — 1 denote

the set of s—dimensional sub—faces of S. Then for a sub—face S’ € 04(S) we have S’ € OF. Moreover,
)

the outward unit normal of S is an outward unit normal of S” (up to sign); i.e., ng = in(s, for some

j€{1,2,...,n— s}. Therefore by (4.1) we have
/’ul-nsz wp, -ng =0 VS e Og(S), 0<s<n-—1.
’ S/

Thus, since vy - ng € Qa(S) on S, we conclude that v; - ng = 0 by Lemma 2.1. Therefore v, € ‘o/h.

Step 3: In this step we prove the stability estimate [|v1 (|, < Cllq[|12(q). For @ € Tj, set ©(2) = v(z),
where x = F'(Z) and we recall that F' : Q — Q denotes the affine transformation between the reference
element () and ). We then have by scaling and the equivalence of norms in a finite-dimensional setting,

1
IV (01— wh)l[72q) + > 7o llvr —wnlizas)
Seln—1(Q)NOY

n—1
<O ? [V —n)lagy + D0 ool
SEDn—l(Q)

< Chy [0y — il ) < Cllvr = wllFp ).

Therefore by (4.3) and since wjy, vanishes on 02, we have

1
IVo1[Z2(q) + Z hiH’UlH%?(S) < Clllwl 1 gy + IVwrlZ2g)] < Cllwllin g
sed, 1 (Q)nOP

n—1

Summing over @ € T, then yields

1
(4.6) Vo172 + Z E”"“”%Z(S) < Cllw| ) < Cllalliz(q)-
sedB

n—1
The estimate ||v1]|n < C|q||z2(q) now from (4.6) and scaling.
Step 4: Let va g € Q;(Q) satisfy divvs glg = (¢ — divvr)|g and set vo € V, such that va|g =
v2glg on each Q € T, (cf. Theorem 3.7). Note that vy € V;, N H} () and therefore vy € V.

Finally we set v = v; + vy € ‘O/h. The properties of v; and vs then infer that dive = ¢ and
vz @) < Cllgllzz)- O

5. Reduced Elements with Continuous Pressure Approximations

In this section we define a stable pair of Stokes elements with fewer global degrees of freedom
by restricting the range of the divergence operator of Vj,. To construct the spaces, we denote by
B;(Q) C 95(Q) the space spanned by the bubble functions associated with Us(Q), i.e.,

B.Q) = & (bs),

Sels(Q)

where <bs> denotes the span of bg. We then have the following decomposition which follows from
Lemma 2.1:

Q) =%@ o é By(Q).
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FIGURE 2. Degrees of freedom of the reduced velocity (left) and reduced pressure
(right) elements in two and three dimensions.

The local reduced pressure space is then obtained by removing the (n—1)-dimensional face bubbles

of QQ(Q), i.e.,

0 2(Q) = (@) & (P BQ) & B(Q).

For example, in two dimensions Qy r(Q) is the space of bilinear polynomials enriched with face bubbles,
where as in three dimensions Qs r(Q) is the space of trilinear polynomials enriched with edge and
volume bubbles. It is easy to see (cf. Lemma 2.1)) that the dimension of Qs g(Q) is 3™ — 2n, and that
a function ¢ € Qs g(Q) is uniquely determined by the values

/q S el (@), se{0,1,...,n—2,n}.
S

We note that these degrees of freedom induce a globally continuous finite element space.
The reduced local velocity element consists of functions in Q3 (Q) with divergence in Qs r(Q):

95 2(Q) == {v € 25 (Q) : divw e 0 r(Q)}.

Lemma 5.1. A function v € Q3 p(Q) is uniquely determined by the values (3.3a)—(3.3b); see Figure
2.

Proof. The number of constraints imposed in the definition of Q3 (@) is 2n, and therefore dim Q3 (Q) >

dim Q3 (Q) — 2n = 4n3"~1 — 2n; the right-hand side of this inequality being the number of condi-
tions in (3.3a)—(3.3b). Again, we show that if v € Qg 5(Q) vanishes on (3.3a)-(3.3b), then v = 0 to
complete the proof.

If v € Q5 z(Q) C Q3 (Q) vanishes on (3.3a)-(3.3b), then v € H{(Q) by Lemma 3.2. Moreover,
the Lemma also shows that divv|g = 0 for all S € O4(Q) with 0 < s < n — 2. By the definition
of Q2 r(Q) and by the properties of the bubble functions, this implies divv = ¢bg for some ¢ € R™.
Integration by parts then gives us

c/ bQ:/diV'v:/ v-n=0.
Q Q 9Q

Consequently, divv = 0, and therefore by Lemma 3.5, v = 0. O
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The reduced global velocity and pressure spaces are given respectively by
Van:={ve H(div;Q)NV,: v|ge 93 r(Q), v-n|gq =0},
Wrp:={qg€ H(QNLIQ) : dlg € 0.r(Q)}

where H'!(div ;) denotes the space of vector-valued H' function with divergence in H'().
The analogous result given in Theorem 4.3 is provided below for the reduced spaces.

Theorem 5.2. For every q € WR,h; there exists v € ‘O/Rﬁ such that divv = q and [|v| g1 ) <
Cllqllz2(q)- Moreover, div Van=Wera.

Proof. By Theorem 4.2, for given ¢q € WR,h C Wh, there exists v € ‘O/h such that divv = ¢ and
vl @) < Cligllz2(q)- Since ¢ € Wr i, we have v|q € Q3 z(Q) on all Q € Ty, and divw € HY(Q).

We then conclude that v € ‘O/R,;L.
The second assertion of the Theorem follows from the first and the inclusion div Vg p, € Wg. O

6. The Stokes Problem and Convergence Analysis

Let X B X f’h denote either the finite element pair ‘D/h X Wh or the reduced pair ‘7R7h X WR,h- ‘We
consider the finite element method: find (wp,pp) € Xp X Yy, such that

(6.1a) ap(up,v) — / (divo)pp, = / fv Yo € X,
Q Q

(6.1b) / (divaug)g =0 Vg € Yy,
Q

where the bilinear form a(-,-) is given by

(v.aﬁ+ﬁ.w,iv.w)
a’ns 8n5 hS ’

and o > 0 is a positive penalty parameter, independent of h. It is well-known [20] that if o is taken
sufficiently large then a(-,-) is coercive on Xj; in particular, vallv||? < ap(v,v) Yo € X, where the
discrete H'type norm ||-||, is defined by (4.4). Moreover, the form is continuous on H2(Q)+Vj,, i.e.,
|a(v, w)| < Cvlv|y||lwl], for all v,w € H2(Q)+ V,,. Consequently, there exists a unique pair (ws, pp)
satisfying (6.1) by Theorem 4.3, Theorem 5.2 and standard theory [5, 13] Furthermore the velocity
approximation wuy is independent of the choice of finite element space Xh = Vh or X = VR 5, since
the kernels of these two spaces are the same.

Restricting (6.1) to the kernel Z), = {v € X}, : divv = 0}, and using the consistency of the bilinear
form a(-,-), we have by Cea’s Lemma

_ <2 inf |u-—
| —unl[n < vlenzh’Hu v||n

provided u € H?(Q) (or more precisely, u € H® for some s > 3/2). To estimate the approximation
properties of Zj, we follow the arguments given in [6, Theorem 12.5.17]. To this end, take an arbitrary
v € X5, and let w € X, satisfy divw = —dive € Y}, and |wl|, < C|divv| p2) = [|div (u —
v)||r2(0) < Cllu—v||n. We then have w+wv € Zj, and ||lu—(w+v)|[n < [[u—v|p+[|w|r < Cllu—v||4.
Consequently,
lu —up|ln <2 inf ||u—v|) <C inf ||Ju—ovlp.
veZy veXy

If X, = Vi, then |ju — up|lp < Cinf v, lu—vln < CR°||lullgstrq) (1 < s < 2) by stan:iard
approximation theory and scaling. Therefore ||u — wy ||, satisfies the same estimate in the case X, =
VRJ,, since uy, is the same approximation.
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Denote by Pj, : LQ(Q) — ffh the L? projection onto }o/h. Since div X'h = f’h, we have by Theorems

4.3

and 5.2,
Jo(divv)(ph — Pup)

Cllpn — Pupllz2() < sup

veVi\ {0} [vlln
divv — —
= sup Jo )(pr —p) = sup an(u — up, v) < Cvllu — upln.
veVi\{0} vl veVi\{0} [v]ln

Therefore we have

Ip—pullzz) < lp = Puplle2) + Crllu —wunlln - < Ch([Iplas) + vlullpei) (1 <s<2).

We summarize the results of this section in the following theorem.

Theorem 6.1. There exists a unique (uy,pn) € Xp X Y, satisfying (6.1). Moreover there holds

(1<s<2)
(6.2a) lu — up|n < C’hs||uHHs+1(Q),
(6.2b) 1P — pullrz) < CR* (1Pl me (o) + viwl g+ ()],

where the constant C' > 0 is independent of h, w, p or the viscosity v.

Remark 6.2. The velocity error estimate (6.2a) has optimal order of convergence. The pressure error
estimate (6.2b) on the other hand is of optimal order provided Y}, = Wg .
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APPENDIX A. A CALCULUS IDENTITY

Lemma A.1. Let {a;}; C R"™ be a set of constant orthonormal (column) vectors. Then there holds

dlvv—zaa a;.
i

Proof. Let A be the orthonormal matrix A = [a1|as|---|a,] € R"*", and define 9(2) = A~ v(z) =
ATv(x), where x = AZ. We then have Dv(z) = AD#(2)AT by the chain rule [5]. Therefore, since
the trace is invariant under similarity transforms, and since A is orthonormal, we have

T ST T _
2 E al (Dv)a 12_1 (a; A)DO(a; A)" = ;:1 0%,
= div tr(Dd) = tr(Dv) = div v.
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