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Abstract. Conforming piecewise polynomial spaces with respect to cubic meshes are constructed
for the Stokes problem in arbitrary dimensions yielding exactly divergence–free velocity approxima-

tions. The derivation of the finite element pair is motivated by a smooth de Rham complex that is

well–suited for the Stokes problem. We derive the stability and convergence properties of the new
elements as well as the construction of reduced elements with less global unknowns.

1. Introduction

This article constructs two families of stable and conforming finite element pairs for the Stokes
problem with respect to cubic meshes in arbitrary dimension. In particular, we shall construct finite
element spaces Xh ⊂ H1(Ω) and Yh ⊂ L2(Ω) satisfying the discrete inf–sup (or Ladyzenskaja–
Babuska–Brezzi) condition

β‖q‖L2(Ω) ≤ sup
v∈Xh\{0}

∫
Ω

(div v)q dx

‖v‖H1(Ω)
,(1.1)

and, in addition, satisfy the conforming property

Zh := {v ∈Xh :

∫
Ω

(div v)q dx = 0, ∀q ∈ Yh} ⊂ Z := {w ∈H1(Ω) : divw ≡ 0}.(1.2)

Condition (1.2) states that the discretely divergence–free subspace is in fact divergence–free pointwise.
As a result, the computed velocity approximation of the Stokes problem is exactly solenoidal.

It is well–known (cf. [5]) that the discrete Stokes problem based on the velocity–pressure formulation
is well–posed if and only if the discrete inf–sup condition (1.1) is satisfied. It implies that the divergence
operator acting on the velocity space Xh has a surjective–type property with a bounded right inverse;
in short, the discrete inf–sup condition implies the inclusion Yh ⊆ PhdivXh, where divXh is the
image Xh under the divergence operator and Ph is the L2–projection onto Yh. If this condition is
satisfied, then the discrete velocity approximation satisfies the quasi–optimal estimate

‖u− uh‖H1(Ω) ≤ C
[

inf
v∈Xh

‖u− v‖H1(Ω) + ν−1 inf
q∈Yh

‖p− q‖L2(Ω)

]
,(1.3)

where C > 0 is a constant with scaling β−1 and ν denotes the viscosity of the fluid. Numerical
experiments in, e.g., [16] show that the scaling in (1.3) is sharp, and therefore the error may deteriorate
for small viscosity–values.

The conforming property (1.2) on the other hand implies the reverse relation divXh ⊆ Yh, and
thus, finite element pairs satisfying both conditions (1.1)–(1.2) satisfy the equality divXh = Yh. In
this setting, the velocity approximation satisfies the decoupled and ν–independent error estimate

‖u− uh‖H1(Ω) ≤ C inf
v∈Xh

‖u− v‖H1(Ω),

where again, C > 0 scales like β−1. Thus, finite element pairs satisfying both conditions (1.1)–(1.2)
have enhanced stability properties and are robust with the problem’s parameters.
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The construction of our finite element pairs is motivated by a smooth de Rham complex (or Stokes
complex [11]). In two dimensions, this complex is given by the sequence

R−→H2(Ω)
curl
−→ H1(Ω)

div
−→ L2(Ω)−→0.(1.4)

If the domain is simply connected, then this complex is exact, i.e., the range of each map is the kernel
of the succeeding map. The exactness property implies that the divergence operator is surjective
from H1(Ω) onto L2(Ω). Along with an estimate of the right–inverse, this result implies the inf-
sup condition in the continuous setting. In n–dimensions we view functions in H1(Ω) and L2(Ω)
as (n − 1)–forms and n–forms, respectively, via their proxies. In particular, if v ∈ H1(Ω) with
v = (v(1), v(2), . . . , v(n))t and q ∈ L2(Ω), then we make the identifications

v ∼
n∑

j=1

v(j)dx1 ∧ · · · ∧ d̂xj ∧ · · · dxn, q ∼ qdx1 ∧ · · · dxn.

Let d denote the exterior derivative and set HΛ`(Ω) to be the space of L2 `–forms with exterior
derivatives in L2. Then the n–dimensional de Rham complex with minimal L2 smoothness is [1, 2]

R−→HΛ0(Ω)
d
−→ · · ·

d
−→ HΛn−2(Ω)

d
−→ HΛn−1(Ω)

d
−→ HΛn(Ω)−→0.

The Stokes complex is obtained by simply imposing additional regularity in the second–to–last and
third–to–last spaces is the sequence:

R−→HΛ0(Ω)
d
−→ · · ·

d
−→ ĤΛn−2(Ω)

d
−→ H1Λn−1(Ω)

d
−→ HΛn(Ω)−→0,(1.5)

where H1Λn−1(Ω) denotes the space of (n − 1)–forms with coefficients in H1(Ω), and ĤΛn−2(Ω) :=
{ω ∈ HΛn−2(Ω) : dω ∈ H1Λn−1(Ω)}. This complex is the guiding tool to develop stable finite element
Stokes pairs that yield divergence–free velocity approximations. Namely, starting with a HΛ0(Ω)–
conforming finite element space, we follow the sequence (1.5) to deduce properties of the finite element
pair Xh × Yh.

The development of conforming finite element pairs yielding divergence–free approximations was
initiated by Scott and Vogelius in [21]. Here, the authors showed that the pair Pk −Pdc

k−1 is stable in
two dimensions on simplicial triangulations provided the polynomial degree satisfies k ≥ 4 and if the
triangulation does not contain singular vertices. These results have since been expanded in [14, 11].
Similar to the simplicial case, the construction of Stokes pairs yielding divergence–free approximations
on Cartesian meshes is mostly limited to the two dimensional case [4, 24, 15]. A noticeable exception
is [8, 7, 9, 10], where the authors developed stable spaces yielding divergence–free approximations
in two and three dimensions within an isogeometric framework. In terms of global regularity, the
finite element spaces developed in this paper are in between the H(div ; Ω)–conforming Nedelec finite
element spaces [18] and these isogeometric spaces. Due to the differences between our elements and
those given in [8, 7], and due to a lack of a Fortin operator, new tools are developed to prove the
necessary inf–sup condition. In particular we first derive a local inf–sup condition with imposed
boundary conditions and then translate this result to the global level by exploiting the element’s
degrees of freedom.

The rest of the paper is organized as follows. In Section 2 we provide the notation that is used
throughout the paper and state some preliminary results. We then state the local velocity and pressure
spaces and their degrees of freedom in Section 3. In addition, we derive some local characterizations
of the divergence operator acting on polynomial spaces. In Section 4 we define the global finite
element spaces and derive the desired inf-sup condition. In Section 5 we construct finite element pairs
with similar approximation and stability properties, but with less unknowns. Finally, we apply these
elements to the Stokes problem in Section 6 and prove error estimates in the energy norm.
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2. Preliminaries

2.1. Notation. Let Ω be an open bounded domain in Rn with boundary parallel to the coordinate
axes. We denote by Th a conforming triangulation of Ω consisting of cubical elements {Q}Q∈Th

such
that the boundary of each element is parallel to the coordinate axes. For an element Q ∈ Th, we
denote by hQ its diameter and by �s(Q) the set of faces of Q with dimension s. In particular, �s(Q)
denotes the set of faces where (n− s) coordinates are one of two constant values. Consequently, the

cardinality of this set is |�s(Q)| = 2n−s
(
n
s

)
. We denote by �(i)

s (Q) the set of s–dimensional faces of

Q where xi is constant and by �̂(i)
s (Q) the set of s–dimensional faces of Q where xi is not constant;

the cardinality of these sets are |�(i)
s (Q)| = 2n−s

(
n−1
s

)
and |�̂(i)

s (Q)| = 2n−s
(
n−1
s−1

)
, respectively, for

any i. The analogous global sets with respect to Th are denoted by �s, �
(i)
s and �̂(i)

s .
We denote by P~k(D) := Pk1,k2,...,kn

(D), the space of polynomials on D ⊂ Rn of degree at most ki
in xi, and set Qk(D) := P~k(D) with ki = k for all i. We further denote the vector–valued space

Q−k (Q) =
{
v ∈

(
Qk(Q)

)n
: v(i) ∈ P~k(Q) with ki = k and kj = k − 1 for i 6= j

}
.

For example Q−k (Q) = Pk,k−1(Q)×Pk−1,k(Q) and Q−k (Q) = Pk,k−1,k−1(Q)×Pk−1,k,k−1×Pk−1,k−1,k(Q)
in two and three dimensions, respectively (cf. [18]). The dimensions of these spaces are dimQk(Q) =
(k + 1)n and dimQ−k (Q) = n(k + 1)kn−1.

Lemma 2.1 ([3]). A function q ∈ Qk(Q) is uniquely determined by the values∫
S

qκ κ ∈ Qk−2(S), S ∈ �s(Q), s = 0, 1, . . . , n,(2.1)

where
∫
S
q with S ∈ �0(Q) is understood to be the evaluation of q at the vertex S.

For an element Q ∈ Th with face S ∈ �s(Q) (1 ≤ s ≤ n), we denote by bS the bubble function with
respect to S. In particular, bS ∈ Q2(Q) is a quadratic polynomial in each variable that vanishes on ∂S
and takes the value one at the center of S. If S ∈ �n(Q) = {Q}, then we denote the bubble function
by bQ. We remark that ∇bS 6≡ 0 on ∂S; however, the gradient of the bubble function vanishes on
(s− 2)–dimensional sub–faces of S.

3. The Local Stokes Elements

In this section we define the local velocity and pressure finite elements for the Stokes problem. In
particular, we define the local spaces of these elements and the unisolvent sets of degrees of freedom.
In addition, we derive a characterization of the divergence acting on the local velocity space, crucial
for the stability analysis of the global spaces defined in the subsequent section.

3.1. Local velocity finite element spaces on cubic meshes in Rn. In this section we define the
local velocity space and degrees of freedom. First, we require the following technical result.

Lemma 3.1. Suppose v = (v(1), v(2), . . . , v(n)) ∈ Q−3 (Q) satisfies∫
S

v(i) = 0,

∫
S

∂v(i)

∂xi
= 0 S ∈ �(i)

s (Q), s = 0, 1, . . . ,m,(3.1a)

for all 1 ≤ i ≤ n and for some 0 ≤ m ≤ n− 2. Then v = 0, ∂v(i)/∂xi = 0 on �s(Q) for all 1 ≤ i ≤ n
and 0 ≤ s ≤ m. If in addition, ∫

S

v(i) = 0 S ∈ �(i)
m+1(Q),(3.1b)

then v = 0 on �m+1(Q).
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Proof. The proof is by induction on m. The case m = 0 is clearly true since �(i)
0 (Q) = �0(Q) for all

i = 1, 2, . . . , n.

Assume that v and ∂v(i)

∂xi
vanish on all S ∈ �m(Q) for some 0 ≤ m ≤ n− 3 and all 1 ≤ i ≤ n. Let

S ∈ �m+1(Q). By the induction hypothesis, we have v = 0 and ∂v(i)

∂xi
= 0 on ∂S for all 1 ≤ i ≤ n.

If xj is constant on S, i.e., S ∈ �(j)
m+1(Q), then v(j)|S , ∂v(j)/∂xj |S ∈ Q2(S). Therefore we may write

v(j)|S = bSq
(j) and ∂v(j)/∂xj |S = bSp

(j) for some q(j), p(j) ∈ R. By (3.1a) we conclude that both v(j)

and ∂v(j)/∂xj vanish on S.

If S ∈ �̂(j)
m+1(Q) then there exists exactly two m–dimensional faces S(1), S(2) ⊂ ∂S such that xj

is constant on S(1) and S(2). Denote by ∇S and ∇S(i) the surface gradient of S and S(i), respec-

tively. Then, with the correct orientation, we have ∇S(·) = (∇S(i)(·), ∂(·)
∂xj

). Therefore, since v(j) and

∂v(j)/∂xj vanish on S(1) and S(2), we conclude that ∇Sv
(j) = 0 on S(1), S(2). Since v(j)|S ∈ Q3(S),

and vanishes on ∂S, we may write v̄(j)|S = bSq for some q ∈ Q1(S). Consequently,

0 = ∇Sv
(j)|S(i) = q∇SbS |S(i) .(3.2)

We then conclude from (3.2) that q = 0 on S(i), and therefore, since q ∈ Q1(S), q ≡ 0. Thus v(j) = 0
and ∂v(j)/∂xj = 0 on S. The first assertion of the lemma now follows from induction. The second
assertion follows from the exact same arguments. �

The local velocity space and degrees of freedom are given in the next lemma.

Lemma 3.2. Any function v ∈ Q−3 (Q) is uniquely determined by the values (cf. Figure 1)∫
S

v(i),

∫
S

∂v(i)

∂xi
S ∈ �(i)

s (Q), s = 0, 1, . . . , n− 2,(3.3a) ∫
S

v(i) S ∈ �(i)
n−1(Q),(3.3b) ∫

Q

v · κ κ ∈ Q−1 (Q)(3.3c)

for i = 1, 2, . . . , n.

Proof. The number of degrees of freedom given in (3.3) equals

2n

n−2∑
s=0

|�(i)
s (Q)|+ n|�(i)

n−1(Q)|+ dimQ−1 (Q) = 2n

n−2∑
s=0

2n−s
(
n− 1

s

)
+ 2n+ 2n

= 4n
[
− 1 +

n−1∑
s=0

2n−1−s
(
n− 1

s

)]
+ 4n

= 4n3n−1 = Q−3 (Q).

by the binomial theorem. Thus, to show that (3.3) form a unisolvent set over Q−3 (Q), it suffices to
show that a function v ∈ Q−3 (Q) vanishes on (3.3) if and only if v ≡ 0.

If v vanishes on (3.3), then ∂v(i)/∂xi = 0 on �n−2(Q) and v = 0 on �n−1(Q) by Lemma 3.1.
Therefore v = bQq for some q ∈ Q−1 (Q). Finally, the last set of degrees of freedom (3.3c) implies
v ≡ 0. �
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n = 2

n = 3

Figure 1. Degrees of freedom of the velocity (left) and pressure (right) elements in
two and three dimensions.

Remark 3.3. For S ∈ �s(Q) let {n(j)
S }

n−s
j=1 be an orthonormal set of vectors orthogonal to the tangent

space of S. We may then write the degrees of freedom (3.3a)–(3.3b) as∫
S

v · n(j)
S ,

∫
S

∂v

∂n
(j)
S

· n(j)
S S ∈ �s(Q), s = 0, 1, . . . , n− 2, j = 1, 2, . . . , n− s,(3.4a) ∫

S

v · nS S ∈ �n−1(Q).(3.4b)

We shall use the (equivalent) degrees of freedom (3.4), (3.3c) in Section 4 below.

3.2. Local pressure finite element spaces on cubic meshes in Rn. The local pressure space
consists of tensor–product quadratic polynomials, namely Q2(Q). By Lemma 2.1 any function q ∈
Q2(Q) is uniquely determined by the values∫

S

q, S ∈ �s(Q), s = 0, 1, . . . , n.(3.5)

Consequently, the subspace

qQ2(Q) := {q ∈ Q2(Q) : q vanishes on all (n− 2)–dimensional faces of Q},

has dimension 2n+ 1. Namely, a function q ∈ qQ2(Q) is uniquely determined by its average over each
(n− 1)–dimensional face, and its average over Q. This conversation also leads to the following result:

Lemma 3.4. Any function q ∈ Q2(Q) is uniquely determined by the values∫
S

q S ∈ �s(Q), s = 0, 1, . . . , n− 2,∫
Q

qκ κ ∈ qQ2(Q).

3.3. Local characterizations of the divergence.

Lemma 3.5. Let v ∈ Q−3 (Q). Suppose that div v = 0 and that v vanishes on the boundary of Q.
Then v ≡ 0.
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Proof. Let v̄ ∈ Λn−1(Q) denote the (n− 1)–form with vector proxy v = (v(1), v(2), . . . , v(n)); i.e.,

v̄ =

n∑
i=1

v(i)dx1 ∧ · · · ∧ d̂xi ∧ · · · dxn,

where the hat indicates a suppressed argument. For a vector–valued function κ, we also denote by
κ ∈ Λ1(Q) the one–form given by

κ =

n∑
i=1

κ(i)dxi.

The divergence–free condition on v is equivalent to dv̄ = 0, where d denotes the exterior derivative.
Moreover the boundary condition v|∂Q = 0 implies that the trace of v̄ vanishes on ∂Q. Therefore

there exists ϕ ∈ H̊Λn−2(Q) such that v̄ = dϕ [1, 2]. Here, H̊Λn−2(Q) denotes the space of L2(Q)
(n− 2)–forms with exterior derivative in L2(Q) and vanishing trace. By Stokes Theorem, we have for
any κ ∈ Q−1 (Q) ∫

Q

v · κ =

∫
Q

v̄ ∧ κ =

∫
Q

dϕ ∧ κ = (−1)n−1

∫
Q

ϕ ∧ dκ = 0.(3.6)

The last equality is due to the identity dκ = 0 for κ ∈ Q−1 (Q). Indeed, we have

dκ =

n∑
k=1

n∑
j=1

∂κ(j)

∂xk
dxk ∧ dxj =

n∑
j=1

n∑
j=1

j 6=k

∂κ(j)

∂xk
dxk ∧ dxj = 0

since κ(j) is constant in xk for j 6= k. By (3.6) and Lemma 3.2 we conclude that v ≡ 0. �

Remark 3.6. An alternative proof of Lemma 3.5 without the direct use of differential forms is given
as follows. If v ∈ Q−3 (Q) ∩H1

0 (Q) then v = bQκ for some κ ∈ Q−1 (Q). If div v = 0, then by the
chain rule, ∇bQ · κ + bQdivκ = 0. Restricting this identity to the boundary of Q, we conclude that
κ ·∇bQ|∂Q = 0. In particular κ ·∇bQ|S = 0 for all S ∈ �n−1(Q). However, a simple calculation shows
∇bQ|S = aSnSbS for some non–zero constant aS . Therefore κ · n|∂Q = 0. Due to this identity and

the inclusion κ ∈ Q−1 (Q) we conclude from [3, pg. 9] that κ ≡ 0.

Theorem 3.7. Define the spaces

Q̊
−
3 (Q) : = Q−3 (Q) ∩H1

0 (Q), Q̊2(Q) := qQ2(Q) ∩ L2
0(Q).

Then the divergence operator is a bijection from Q̊
−
3 (Q) to Q̊2(Q). Moreover, there holds ‖v‖H1(Q) ≤

C‖div v‖L2(Q) for all v ∈ Q̊
−
3 (Q) with C > 0 independent of v and the size of Q.

Proof. By the definitions of Q̊
−
3 (Q) and Q̊2(Q) and Stokes Theorem, we see that div Q̊

−
3 (Q) ⊆ Q̊2(Q).

Therefore, in light of Lemma 3.5, it suffices to show that dim
(
div Q̊

−
3 (Q)

)
= dim Q̊2(Q) to prove the

bijective property.
By Lemmas 3.2 and 3.5 we have

dim
(
div Q̊

−
3 (Q)

)
= dim Q̊

−
3 (Q) = dimQ−1 (Q) = 2n.

On the other hand, we have by Lemma 3.4,

dim Q̊2(Q) = dim qQ2(Q)− 1 = 2n.

Therefore dim
(
div Q̊

−
3 (Q)

)
= dim Q̊2(Q), and therefore div : Q̊

−
3 (Q)→ Q̊2(Q) is a bijection.

Finally, let F : Q̂ → Q be an affine mapping, where Q̂ = (0, 1)n is the reference element. In
particular, F (x̂) = Bx̂+b, where b ∈ Rn and B ∈ Rn×n is a diagonal matrix with entries proportional

to hQ. Define v̂ : Q̂ → Rn by the Piola transform v̂(x̂) = adj(B)v(F (x̂)) ∈ Q−3 (Q̂), where adj(B) =
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det(B)B−1 denotes the adjugate matrix of B. We then have d̂iv v̂(x̂) = det(B)div v(x) with x = F (x̂)
[17]. Therefore by Lemma 3.5, scaling arguments and the equivalence of norms in a finite dimensional
setting, we obtain

‖v‖H1(Q) ≤ Ch
−n/2
Q ‖v̂‖H1(Q̂) ≤ Ch

−n/2
Q ‖d̂iv v̂‖L2(Q̂) ≤ C‖div v‖L2(Q).

�

4. The Global Stokes Finite Element Spaces and Stability Properties

4.1. Global Finite Element Spaces without Imposed Boundary Conditions. Lemmas 3.2
and 3.4 induce the following global finite element spaces without boundary conditions:

Vh : = {v ∈H1(Ω) : v|Q ∈ Q−3 (Q) ∀Q ∈ Th, ∂v
(i)/∂xi is continuous across n− 2 dimensional faces},

Wh : = {q ∈ L2(Ω) : q|Q ∈ Q2(Q) ∀Q ∈ Th, q is continuous across n− 2 dimensional faces}.
The goal of this section is to derive the necessary inf–sup condition needed for the well–posedness of
the discrete Stokes problem. First we establish a preliminary result.

Lemma 4.1. For any q ∈ Wh, there exists v1 ∈ Vh such that the restriction of (q − div v1) to Q is

in Q̊2(Q) for all Q ∈ Th. Moreover, ‖v1‖H1(Ω) ≤ C‖q‖L2(Ω).

Proof. Let w ∈ H1(Ω) satisfy divw = q and ‖w‖H1(Ω) ≤ C‖q‖L2(Ω) [13], and denote by wh the
Scott-Zhang interpolant of wh with wh|Q ∈ Q1(Q) := [Q1(Q)]n [23]. The error of the interpolant
satisfies

‖w −wh‖Hm(Q) ≤ Ch2−m
Q ‖w‖H1(ωQ) m = 0, 1,

where ωQ denotes the patch of elements that touch Q.
We then uniquely define the function v1 ∈ Vh by the following iterative process. On vertices, we

specify the conditions (1 ≤ i ≤ n)

v1(S) = wh(S),
∂v

(i)
1

∂xi
(S) =

1

n
q(S) S ∈ �0.(4.1a)

Now suppose that the values of∫
S

v1 · n(j)
S ,

∫
S

∂v1

∂n
(j)
S

· n(j)
S S ∈ �s, j = 1, 2, . . . , n− s

have been specified for s = 0, 1, . . . ,m for some 0 ≤ m ≤ n− 3. By Lemma 3.1 and Remark 3.3, this

implies that the values of v are well–defined on S ∈ �m, and therefore
∫
S

∂v1

∂t
(i)
S

· t(i)S (1 ≤ i ≤ m + 1)

is well–defined on S ∈ �m+1 (by the Fundamental Theorem of Calculus). We then construct v1 such
that∫

S

v1 · n(j)
S =

∫
S

wh · n(j)
S ,

∫
S

∂v1

∂n
(j)
S

· n(j)
S =

1

n−m− 1

∫
S

(
q −

m+1∑
i=1

∂v1

∂t
(i)
S

· t(i)S

)
S ∈ �m+1,

for j = 1, 2, . . . , n −m − 1. Continuing this process up to m = n − 3, we conclude from Lemma 3.1,
Remark 3.3, and Lemma A.1 that∫

S

v1 · n(j)
S =

∫
S

wh · n(j)
S ,

∫
S

div v1 =

∫
S

q S ∈ �s, 0 ≤ s ≤ n− 2.(4.1b)

Finally, the last set of conditions imposed on v1 are∫
S

v1 · nS =

∫
S

w · nS S ∈ �n−1,(4.1c) ∫
Q

v1 · κ =

∫
Q

wh · κ κ ∈ Q−1 (Q), Q ∈ Th.(4.1d)
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By Lemma 3.2 and Remark 3.3, this construction uniquely defines v1 ∈ Vh. Furthermore, the second
identity in (4.1b) implies div v1 = q on (n−2)–dimensional faces (cf. Lemma 2.1). By Stokes theorem
and (4.1c) we also have ∫

Q

div v1 =

∫
Q

divw =

∫
Q

q ∀Q ∈ Th.

Consequently, (q − div v1)|Q ∈ Q̊2(Q) for all Q ∈ Th.
It remains to show the stability estimate ‖v1‖H1(Ω) ≤ ‖q‖L2(Ω). Since (3.3c),(3.4) forms a unisolvent

set over Q−3 (Q), and since v1 −wh|Q ∈ Q−3 (Q), we have by scaling

‖v1 −wh‖2H1(Q) ≈
n−2∑
s=0

∑
S∈�s(Q)

n−s∑
j=1

hn−2s
Q

∣∣∣ ∫
S

( ∂v1

∂n
(j)
S

· n(j)
S −

∂wh

∂n
(j)
S

· n(j)
S

)∣∣∣2(4.2)

+
∑

S∈�n−1(Q)

h−nQ

∣∣∣ ∫
S

(
v1 −wh

)
· nS

∣∣∣2
≤

n∑
s=0

∑
S∈�s(Q)

hn−2s
Q

∣∣∣ ∫
S

q
∣∣∣2 +

n−2∑
s=0

∑
S∈�s(Q)

n−s∑
j=1

hn−2s
Q

∣∣∣ ∫
S

∂wh

∂n
(j)
S

· n(j)
S

∣∣∣2
+

n−2∑
s=0

s∑
i=1

hn−2s
Q

∣∣∣ ∫
S

∂v1

∂t
(i)
S

· t(i)S

∣∣∣2
+

∑
S∈�n−1(Q)

h−nQ

∣∣∣ ∫
S

(
w −wh

)
· nS

∣∣∣2.
For a face S ∈ �s(Q) (1 ≤ s ≤ n−2) and unit tangent vector t

(i)
S (1 ≤ i ≤ s), let S1, S2 ∈ �s−1(Q) be

the (unique) (s− 1)–dimensional faces such that t
(i)
S = ±n(j1)

S1
and t

(i)
S = ±n(j2)

S2
for some 1 ≤ j1, j2 ≤

(n− s+ 1). Then by the Fundamental Theorem of Calculus and by (4.1b), we have∫
S

∂v1

∂t
(i)
S

· t(i)S = ±
∫
S1

v1 · n(j1)
S1
±
∫
S2

v1 · n(j2)
S2

= ±
∫
S1

wh · n(j1)
S1
±
∫
S2

wh · n(j2)
S2

=

∫
S

∂wh

∂t
(i)
S

· t(i)S .

Applying this identity to (4.2) and using scaling arguments yields

‖v1 −wh‖2H1(Q) ≤
n∑

s=0

∑
S∈�s(Q)

hn−2s
Q

∣∣∣ ∫
S

q
∣∣∣2 +

n−2∑
s=0

∑
S∈�s(Q)

n−s∑
j=1

hn−2s
Q

∣∣∣ ∫
S

∂wh

∂n
(j)
S

· n(j)
S

∣∣∣2(4.3)

+

n−2∑
s=0

s∑
i=1

hn−2s
Q

∣∣∣ ∫
S

∂wh

∂t
(i)
S

· t(i)S

∣∣∣2 +
∑

S∈�n−1(Q)

h−nQ

∣∣∣ ∫
S

(
w −wh

)
· nS

∣∣∣2
≤ C

[
‖q‖2L2(Q) + ‖wh‖2H1(Q) + h−1

Q ‖w −wh‖2L2(∂Q)

]
≤ C‖w‖2H1(ωQ).

Summing over Q ∈ Th, we conclude that ‖v1‖H1(Ω) ≤ C
[
‖wh‖H1(Ω) + ‖w‖H1(Ω)

]
≤ C‖w‖H1(Ω) ≤

C‖q‖L2(Ω). �

Theorem 4.2. For any q ∈ Wh there exists v ∈ Vh such that div v = q and ‖v‖H1(Ω) ≤ C‖q‖L2(Ω).
Consequently, the inf–sup condition

sup
v∈Vh\{0}

∫
Ω

(div v)q

‖v‖H1(Ω)
≥ C‖q‖L2(Ω) ∀q ∈Wh

is satisfied.
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Proof. For given q ∈ Wh, Lemma 4.1 guarantees the existence of v1 ∈ Vh satisfying (q − div v1)|Q ∈
Q̊2(Q) for all Q ∈ Th and ‖v1‖H1(Ω) ≤ C‖q‖L2(Ω). By Theorem 3.7, for each Q ∈ Th there exists

v2,Q ∈ Q̊
−
3 such that div v2,Q = q−div v1 and ‖v2,Q‖H1(Q) ≤ C‖q−div v1‖L2(Q). Define v2 such that

v2|Q = v2,Q and set v := v1 + v2. Note that the condition v2|Q ∈ Q−3 (Q) ∩H1
0 (Q) for all Q ∈ Th

implies∇v2|S = 0 on all S ∈ �s with 0 ≤ s ≤ n−2. Therefore, v ∈ Vh with div v = div v1+div v2 = q,
and

‖v‖H1(Ω) ≤ ‖v1‖H1(Ω) + ‖v2‖H1(Ω) ≤ C(‖v1‖H1(Ω) + ‖q − div v1‖L2(Ω)) ≤ C‖q‖L2(Ω).

�

4.2. Global Finite Element Spaces with Imposed Boundary Conditions. As pointed out in
[11], imposing boundary conditions of finite element spaces while preserving the surjectivity of the
divergence is a non–trivial issue. For example, if v is a globally continuous function on Ω and vanishes
on ∂Ω, then the derivatives of v vanish at corners (n = 2) and edges (n = 3) of ∂Ω. Consequently,
the divergence operator is not surjective from Vh ∩H1

0 (Ω) to Wh ∩ L2
0(Ω), and therefore the inf–sup

condition is lost. More precisely, if we denote by �S
s the set of s–dimensional singular faces of ∂Ω,

then the gradient of a function v ∈ Vh ∩H1
0 (Ω) vanishes on ∂Ωs for all 0 ≤ s ≤ n − 2. Here, an

s–dimensional singular face of ∂Ω is a hyperplane of codimension n−s that is the intersection of n−s
non–parallel (n− 1) dimensional hyperplanes of ∂Ω.

On simplicial meshes, this issue may be alleviated by imposing mesh and regularity conditions
locally at the boundary [11, Section 3.1]. On cubic meshes, such procedures are not applicable. For
example, in two dimensions, there will always be elements in Th that have at least two boundary edges.
Instead, we shall impose the weaker boundary condition v · n = 0 in the finite element space and
impose the tangental boundary conditions weakly in the finite element method via Nitsche’s method
[20]. Thus, we consider the finite element spaces

V̊h = {v ∈ Vh : v · n|∂Ω = 0},

W̊h = Wh ∩ L2
0(Ω).

Let �I
s be the set of (open) s–dimensional faces such that the intersection of a face in �I

s with ∂Ω is
empty, and let �B

s = �s\�I
s be the set of boundary s–dimensional faces. We then define the discrete

H1–type norm

‖v‖2h = ‖∇v‖2L2(Ω) +
∑

S∈�B
n−1

( 1

hS
‖v‖2L2(S) + hS‖∂v/∂nS‖2L2(S)

)
.(4.4)

We now prove the analogue of Theorem 4.2 with boundary conditions.

Theorem 4.3. The inf-sup condition

sup
v∈V̊h\{0}

∫
Ω

(div v)q

‖v‖h
≥ C‖q‖L2(Ω) ∀q ∈ W̊h(4.5)

is satisfied for a constant C > 0 independent of h.

Proof. The proof is near identical to the proof of Theorem 4.2. Namely, for given q ∈ W̊h, we use the
degrees of freedom of Vh to construct a v ∈ V̊h such that div v = q and ‖v‖H1(Ω) ≤ C‖q‖L2(Ω) with
C > 0 independent of h. This result will imply the inf–sup condition (4.5). We split up the proof into
four steps.

Step 1: For q ∈ W̊h let w ∈ H1
0 (Ω) satisfy divw = q and ‖w‖H1(Ω) ≤ C‖q‖L2(Ω) [13]. Set

wh to be the Scott–Zhang interpolant of w such that wh|Q ∈ Q1(Q) on each Q ∈ Th. Note that
wh ∈ H1

0 (Ω); in particular, wh|S = 0 for all boundary faces S ∈ �B
s (0 ≤ s ≤ n − 1). We then

construct v1 ∈ Vh by the exact same procedure as in the proof of Lemma 4.1, i.e., v1 is uniquely
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determined by conditions (4.1). This construction then leads to the property (q − div v1)|Q ∈ Q̊2(Q)
for all Q ∈ Th and ‖v1‖H1(Ω) ≤ C‖q‖L2(Ω).

Step 2: We now establish that v1 ∈ V̊h. Let S ∈ �B
n−1, and let �s(S) with 0 ≤ s ≤ n − 1 denote

the set of s–dimensional sub–faces of S. Then for a sub–face S′ ∈ �s(S) we have S′ ∈ �B
s . Moreover,

the outward unit normal of S is an outward unit normal of S′ (up to sign); i.e., nS = ±n(j)
S′ for some

j ∈ {1, 2, . . . , n− s}. Therefore by (4.1) we have∫
S′
v1 · nS =

∫
S′
wh · nS = 0 ∀S′ ∈ �s(S), 0 ≤ s ≤ n− 1.

Thus, since v1 · nS ∈ Q2(S) on S, we conclude that v1 · nS ≡ 0 by Lemma 2.1. Therefore v1 ∈ V̊h.

Step 3: In this step we prove the stability estimate ‖v1‖h ≤ C‖q‖L2(Ω). ForQ ∈ Th, set v̂(x̂) = v(x),

where x = F (x̂) and we recall that F : Q̂→ Q denotes the affine transformation between the reference

element Q̂ andQ. We then have by scaling and the equivalence of norms in a finite–dimensional setting,

‖∇(v1 −wh)‖2L2(Q) +
∑

S∈�n−1(Q)∩�B
n−1

1

hS
‖v1 −wh‖L2(S)

≤ Chn−2
Q

[
‖∇̂(v̂1 − ŵh)‖2L2(Q) +

∑
Ŝ∈�n−1(Q̂)

‖v̂1 − ŵh‖2L2(Ŝ)

]
≤ Chn−2

Q ‖v̂1 − ŵh‖2H1(Q̂)
≤ C‖v1 −w‖2H1(Q).

Therefore by (4.3) and since wh vanishes on ∂Ω, we have

‖∇v1‖2L2(Q) +
∑

S∈�n−1(Q)∩�B
n−1

1

hS
‖v1‖2L2(S) ≤ C

[
‖w‖2H1(ωQ) + ‖∇wh‖2L2(Q)

]
≤ C‖w‖2H1(ωQ).

Summing over Q ∈ Th then yields

‖∇v1‖2L2(Ω) +
∑

S∈�B
n−1

1

hS
‖v1‖2L2(S) ≤ C‖w‖

2
H1(Ω) ≤ C‖q‖

2
L2(Ω).(4.6)

The estimate ‖v1‖h ≤ C‖q‖L2(Ω) now from (4.6) and scaling.

Step 4: Let v2,Q ∈ Q̊
−
3 (Q) satisfy div v2,Q|Q = (q − div v1)|Q and set v2 ∈ Vh such that v2|Q =

v2,Q|Q on each Q ∈ Th (cf. Theorem 3.7). Note that v2 ∈ Vh ∩ H1
0 (Ω) and therefore v2 ∈ V̊h.

Finally we set v = v1 + v2 ∈ V̊h. The properties of v1 and v2 then infer that div v = q and
‖v‖H1(Ω) ≤ C‖q‖L2(Ω). �

5. Reduced Elements with Continuous Pressure Approximations

In this section we define a stable pair of Stokes elements with fewer global degrees of freedom
by restricting the range of the divergence operator of Vh. To construct the spaces, we denote by
Bs(Q) ⊂ Q2(Q) the space spanned by the bubble functions associated with �s(Q), i.e.,

Bs(Q) =
⊕

S∈�s(Q)

〈
bS
〉
,

where
〈
bS
〉

denotes the span of bS . We then have the following decomposition which follows from
Lemma 2.1:

Q2(Q) = Q1(Q)⊕
n⊕

s=1

Bs(Q).
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n = 2

n = 3

Figure 2. Degrees of freedom of the reduced velocity (left) and reduced pressure
(right) elements in two and three dimensions.

The local reduced pressure space is then obtained by removing the (n−1)–dimensional face bubbles
of Q2(Q), i.e.,

Q2,R(Q) := Q1(Q)⊕
( n−2⊕

s=1

Bs(Q)
)
⊕Bn(Q).

For example, in two dimensions Q2,R(Q) is the space of bilinear polynomials enriched with face bubbles,
where as in three dimensions Q2,R(Q) is the space of trilinear polynomials enriched with edge and
volume bubbles. It is easy to see (cf. Lemma 2.1)) that the dimension of Q2,R(Q) is 3n−2n, and that
a function q ∈ Q2,R(Q) is uniquely determined by the values∫

S

q S ∈ �s(Q), s ∈ {0, 1, . . . , n− 2, n}.

We note that these degrees of freedom induce a globally continuous finite element space.
The reduced local velocity element consists of functions in Q−3 (Q) with divergence in Q2,R(Q):

Q−3,R(Q) := {v ∈ Q−3 (Q) : div v ∈ Q2,R(Q)}.

Lemma 5.1. A function v ∈ Q−3,R(Q) is uniquely determined by the values (3.3a)–(3.3b); see Figure
2.

Proof. The number of constraints imposed in the definition of Q−3,R(Q) is 2n, and therefore dimQ−3,R(Q) ≥
dimQ−3 (Q) − 2n = 4n3n−1 − 2n; the right–hand side of this inequality being the number of condi-
tions in (3.3a)–(3.3b). Again, we show that if v ∈ Q−3,R(Q) vanishes on (3.3a)–(3.3b), then v ≡ 0 to
complete the proof.

If v ∈ Q−3,R(Q) ⊂ Q−3 (Q) vanishes on (3.3a)–(3.3b), then v ∈ H1
0 (Q) by Lemma 3.2. Moreover,

the Lemma also shows that div v|S = 0 for all S ∈ �s(Q) with 0 ≤ s ≤ n − 2. By the definition
of Q2,R(Q) and by the properties of the bubble functions, this implies div v = cbQ for some c ∈ Rn.
Integration by parts then gives us

c

∫
Q

bQ =

∫
Q

div v =

∫
∂Q

v · n = 0.

Consequently, div v = 0, and therefore by Lemma 3.5, v ≡ 0. �
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The reduced global velocity and pressure spaces are given respectively by

V̊R,h : = {v ∈H1(div ; Ω) ∩ Vh : v|Q ∈ Q−3,R(Q), v · n|∂Ω = 0},

W̊R,h : = {q ∈ H1(Ω) ∩ L2
0(Ω) : q|Q ∈ Q2,R(Q)},

where H1(div ; Ω) denotes the space of vector–valued H1 function with divergence in H1(Ω).
The analogous result given in Theorem 4.3 is provided below for the reduced spaces.

Theorem 5.2. For every q ∈ W̊R,h, there exists v ∈ V̊R,h such that div v = q and ‖v‖H1(Ω) ≤
C‖q‖L2(Ω). Moreover, div V̊R,h = W̊R,h.

Proof. By Theorem 4.2, for given q ∈ W̊R,h ⊂ W̊h, there exists v ∈ V̊h such that div v = q and

‖v‖H1(Ω) ≤ C‖q‖L2(Ω). Since q ∈ W̊R,h, we have v|Q ∈ Q−3,R(Q) on all Q ∈ Th, and div v ∈ H1(Ω).

We then conclude that v ∈ V̊R,h.

The second assertion of the Theorem follows from the first and the inclusion div V̊R,h ⊆ W̊R,h. �

6. The Stokes Problem and Convergence Analysis

Let X̊h × Y̊h denote either the finite element pair V̊h × W̊h or the reduced pair V̊R,h × W̊R,h. We

consider the finite element method: find (uh, ph) ∈ X̊h × Y̊h such that

ah(uh,v)−
∫

Ω

(div v)ph =

∫
Ω

f · v ∀v ∈ X̊h,(6.1a) ∫
Ω

(divuh)q = 0 ∀q ∈ Y̊h,(6.1b)

where the bilinear form a(·, ·) is given by

ah(v,w) = ν

∫
Ω

∇v : ∇w − ν
∑

S∈�B
n−1

∫
S

(
v · ∂w

∂nS
+

∂v

∂nS
·w − σ

hS
v ·w

)
,

and σ > 0 is a positive penalty parameter, independent of h. It is well–known [20] that if σ is taken

sufficiently large then a(·, ·) is coercive on X̊h; in particular, να‖v‖2h ≤ ah(v,v) ∀v ∈ X̊h, where the

discrete H1–type norm ‖ ·‖h is defined by (4.4). Moreover, the form is continuous on H2(Ω)+ V̊h, i.e.,

|a(v,w)| ≤ Cν‖v‖h‖w‖h for all v,w ∈ H2(Ω) + V̊h. Consequently, there exists a unique pair (uh, ph)
satisfying (6.1) by Theorem 4.3, Theorem 5.2 and standard theory [5, 13]. Furthermore the velocity

approximation uh is independent of the choice of finite element space X̊h = V̊h or X̊h = V̊R,h since
the kernels of these two spaces are the same.

Restricting (6.1) to the kernel Zh = {v ∈ X̊h : div v ≡ 0}, and using the consistency of the bilinear
form a(·, ·), we have by Cea’s Lemma

‖u− uh‖h ≤ 2 inf
v∈Zh

‖u− v‖h

provided u ∈ H2(Ω) (or more precisely, u ∈ Hs for some s > 3/2). To estimate the approximation
properties of Zh, we follow the arguments given in [6, Theorem 12.5.17]. To this end, take an arbitrary

v ∈ X̊h and let w ∈ X̊h satisfy divw = −div v ∈ Y̊h and ‖w‖h ≤ C‖div v‖L2(Ω) = ‖div (u −
v)‖L2(Ω) ≤ C‖u−v‖h. We then have w+v ∈ Zh and ‖u−(w+v)‖h ≤ ‖u−v‖h+‖w‖h ≤ C‖u−v‖h.
Consequently,

‖u− uh‖h ≤ 2 inf
v∈Zh

‖u− v‖h ≤ C inf
v∈X̊h

‖u− v‖h.

If X̊h = V̊h, then ‖u − uh‖h ≤ C infv∈V̊h
‖u − v‖h ≤ Chs‖u‖Hs+1(Ω) (1 ≤ s ≤ 2) by standard

approximation theory and scaling. Therefore ‖u−uh‖h satisfies the same estimate in the case X̊h =

V̊R,h since uh is the same approximation.



STOKES ELEMENTS ON CUBIC MESHES 13

Denote by Ph : L2(Ω)→ Y̊h the L2 projection onto Y̊h. Since div X̊h = Y̊h, we have by Theorems
4.3 and 5.2,

C‖ph − Php‖L2(Ω) ≤ sup
v∈V̊h\{0}

∫
Ω

(div v)(ph − Php)

‖v‖h

= sup
v∈V̊h\{0}

∫
Ω

(div v)(ph − p)
‖v‖h

= sup
v∈V̊h\{0}

ah(u− uh,v)

‖v‖h
≤ Cν‖u− uh‖h.

Therefore we have

‖p− ph‖L2(Ω) ≤ ‖p− Php‖L2(Ω) + Cν‖u− uh‖h ≤ Chs
(
‖p‖Hs(Ω) + ν‖u‖Hs+1(Ω)

)
(1 ≤ s ≤ 2).

We summarize the results of this section in the following theorem.

Theorem 6.1. There exists a unique (uh, ph) ∈ X̊h × Y̊h satisfying (6.1). Moreover there holds
(1 ≤ s ≤ 2)

‖u− uh‖h ≤ Chs‖u‖Hs+1(Ω),(6.2a)

‖p− ph‖L2(Ω) ≤ Chs
[
‖p‖Hs(Ω) + ν‖u‖Hs+1(Ω)

]
,(6.2b)

where the constant C > 0 is independent of h, u, p or the viscosity ν.

Remark 6.2. The velocity error estimate (6.2a) has optimal order of convergence. The pressure error

estimate (6.2b) on the other hand is of optimal order provided Y̊h = W̊R,h.
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Appendix A. A Calculus Identity

Lemma A.1. Let {ai}ni=1 ⊂ Rn be a set of constant orthonormal (column) vectors. Then there holds

div v =

n∑
i=1

∂v

∂ai
· ai.

Proof. Let A be the orthonormal matrix A = [a1|a2| · · · |an] ∈ Rn×n, and define v̂(x̂) = A−1v(x) =

ATv(x), where x = Ax̂. We then have Dv(x) = AD̂v̂(x̂)AT by the chain rule [5]. Therefore, since
the trace is invariant under similarity transforms, and since A is orthonormal, we have

n∑
i=1

∂v

∂ai
· ai =

n∑
i=1

aT
i (Dv)ai =

n∑
i=1

(aT
i A)D̂v̂(aT

i A)T =

n∑
i=1

∂v̂(i)

∂x̂i

= d̂iv v̂ = tr(D̂v̂) = tr(Dv) = div v.
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