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Abstract: As the genetic algorithms have been perceived to be compatible
for solving optimization problems, several techniques using genetic algorithms
have been applied to a wide range of optimization problems including floorplan
area optimization problem. In this study, the representations of the floorplan
area designs are set forth with their effectiveness, a detailed analysis of the
structure of genetic algorithms is made and the applications of genetic algo-
rithms to the floorplan area optimization problem are discussed comparatively.
Thus, the development of the floorplan area representations and the evolution
of the genetic algorithms applied to the floorplan area optimization problem are
observed.

Ozet: Genetik algoritmalarin optimizasyon problemlerinin c¢oziimiinde
kullanilabilecek uygun yontemler oldugunun belirlenmesi ile birlikte pek cok
optimizasyon probleminin ¢oziimiinde oldugu gibi yerlesim plani alani opti-
mizasyonu probleminin ¢éziimiinde de genetik algoritmalarin kullanildig: gesitli
tekniklere bagvurulmustur. Bu galigmada, yerlesim plami alam tasarimlarinin
gosterilimleri etkinlik dereceleri ile birlikte verilmig, genetik algoritma yapisinin
ayrintili bir analizi yapilmig ve yerlesim plani alani optimizasyonu problemi-
ne yapilan genetik algoritma uygulamalar1 karsilagtirmali olarak verilmigtir.
Boylece, yerlesim plani alani gosterilimlerinin geligimi ve yerlesim plani alani op-
timizasyonu problemine uygulanan genetik algoritmalarin evrimi gbzlemlenmistir.
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1 Introduction

Floorplanning is an essential placement problem in VLSI (Very Large Scale
Integration) physical design as it helps to determine a compact placement of a
given set of circuit modules on the minimum bounding rectangle of a floor plan.

Very Large Scale Integration (VLSI) is the creation process of integrated
circuits by integrating thousands of circuits made up of transistors into a single
chip. In electronics, an integrated circuit called a chip is a small electronic
circuit which has been manufactured in a thin substrate of the surface of a
semiconductor material.

Integrated circuits are widely used in electronic equipments these days and
have changed the electronics world radically. Integrating large numbers of tiny
transistors into a small chip was an immense improvement over the manual as-
sembly of circuits using discrete electronic components. As a result, the VLSI
started during the development of complex semiconductor and communication
technologies in the 1970s. As the number of complex functions required in
data processing and telecommunications devices increases, the necessity of in-
tegrating these functions in a small system increase as well. This results in the
augmentation of the effectiveness of the floorplanning to the VLSI design[12].

The basic principle of floorplanning is the determination of the relative po-
sitions of the modules and the selection of the best implementations for all the
modules according to an evaluation function in order to minimize the chip area.
Additionally, in some of the related works, floorplan design problem objects to
minimize the total length of the wires connecting the terminals on the modules’
boundaries to reduce the high fabrication costs and the complexity of the design.

Geometric relationships among the modules affect the module operations
and the complexity of the design process. Thus,the floorplan representation
structure has crucial effects on the flexibility, efficiency and effectiveness of the
optimization problem. There are mainly two types of representations of floor-
plans: slicing floorplans and non-slicing floorplans. A slicing floorplan is the
floorplan obtained by the recursive cuts of a rectangle in horizontal or vertical
directions. A non-slicing floorplan is the floorplan which does not satisfy this
condition[4] (See Figure-1). Slicing floorplans are represented by binary trees.
Non-slicing floorplans are represented by Sequence Pair (SP), O-tree, and Cor-
ner Block List(CBL) techniques.

Generally, non-sliceable representations’ solution space is larger than that of
sliceable representations but it is shown that the solutions of sliceable represen-
tations are similar to the solutions of non-sliceable representations; furthermore
they are preferable in solving large-size design problems as it is more advanta-
geous to use a representation with a small solution space in such cases[3].

Moreover, genetic algorithms is another tool used in large-scale floorplan



design problems. In this paper, genetic algorithms using different kinds of ge-
netic operators and referring to distinctive evolutionary methods are analyzed
in solving the floorplan area optimization problem.

I""'k'

d

a

g 7

{_’J

d g b ; h

(a) (b)

Figure-1: @) adliceable structure b) a non-sliceable structure



2 Floorplan Representations

In representing slicing floorplans, it is possible to use slicing trees, which
has the modules as its leaves and the operators representing the cuts as its
internal nodes (See Figure-2).

Additionally, the slicing floorplan can be represented by a Polish expression
through the post-order traversal of the slicing tree. Thus, for a slicing floorplan
consisting of n modules, the Polish expression will be (2n — 1) long as the
operators are also added in accordance with the places they occupy in the slicing
tree[3]. By evaluating this expression using the stack structure one can obtain
the dimensions of the bounding rectangle as follows:

e While the expression is scanned from left to right, the element composed
of the width and the height of a module are pushed to the top of the stack
whenever the module name is encountered.

e When x operator is seen, both the top and next to-top elements in the
stack are popped out and a new element having their total width as its
width and maximal height as its height is added to the stack.

e When + operator is seen, both the top and next to-top elements in the
stack are popped out and a new element having their total height as its
height and the maximal width as its width is added to the stack.

Eventually, only one rectangle i.e. the bounding rectangle is left in the
stack[3].
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Figure-2: A floorplan with its corresponding slicing tree and Polish expression



In representing non-slicing floorplans, the SP (Sequence Pair), B* tree, O-
tree and CBL (Corner Block List) are used.

In SP representations, pairs of module name sequences (R+, R—) are used in
representing a placement. These sequences are obtained by applying a method
called Gridding to the placement. Every sequence pair corresponds to a feasible
placement(See Figure-3). Under the left-of and below constraints, horizontal-
constraint and vertical-constraint graphs are constructed and eventually the
dimensions of the chip are determined by the longest path calculations in hor-
izontal and vertical dimensions. Thus one of the optimal solutions is obtained
[9].

e V: source s, sink t and m vertices are labeled with module names

e E: (s,7), (z,t) for each module z and (z,z’) iff x is left of 2’

o Vertex-weight: 0 for s and ¢, width of the module for any other module

The vertical constraint graph Gy (V, E) based on the below constraint is also
constructed in a similar way by using the heights of the modules(See Figure-4).

The longest path lengths between the source and the sink in these graphs
provide the width and the height of the chip [9].

(a) (b)

Figure-3: a) oblique grid for R+ ={abcde} and R-={dbaec}
b) resultant packing
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Figure-4: Constraint graphs. a) GH (above), b) GV (below)



In B* tree representations, the root of a B* tree is demonstrated by the
module on the bottom-left corner of the placement and the rest of the tree is
constructed through the DFS (Depth First Search) method. Starting from the
root, firstly the left subtree and then the right subtree are constructed. Let R;
denote the modules on the right hand side and adjacent to the module b;. The
left child of the node n; corresponds to the lowest unvisited module in R; and
the right child of n; corresponds to the module above and adjacent to b; with its
x coordinate equal to b;’s and y coordinate less than the y coordinate of the top
boundary of the module on the left hand side and adjacent to b; if there exists
such (See Figure-5). B*tree preserves the mutual relations between the modules.
When the node n; is the left child of the node n;, module b; should be located
on the right hand side and adjacent to b; with its # coordinate z; = x; +w and
when the node n; is the right child of the node n;, module b; should be located
above and adjacent to b; with its x coordinate equal to the x coordinate of the
module b;[2].

O-tree structure differs from B*tree structure with its irregularity. Each node
of an O-tree can have arbitrary number of branches(See Figure-6). This irregular
structure of the O-tree makes the deviations from the optimal solution possible
during the perturbation procedure including insertion and deletion operations
used in the floorplan algorithm. This drawback of the O-tree representation
circumscribes the quality of the resultant floorplan design . Another important
property of the O-tree structure is that it can only represent an permissible
placement which prevents modules from shifting left or down with other modules
being fixed such that all the modules are compacted at the left and bottom
boundary of the chip.

When the O-tree and B* tree representations are compared, B* tree represen-
tations are determined to perform 4.5 times faster than O-tree representations,
which have been known as the fastest for the non-slicing floor plans, consuming
60 percent less memory and obtaining better results[2].
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Another representation is Corner Block List (CBL) which is constructed
from the record of recursive corner block deletions. For each deletion, a record
of the deleted block name, block orientation and the number of the T-junctions
is kept. A T-junction is a composition of a crossing and a non-crossing segment
which has one end point joining it to the crossing segment’s interval. At the
end of the deletions, the data related with these three items concatenated in a
reverse order and a sequence S of block names, a list L of orientations and a list
T of T-junction information are obtained and this three tuple (S, L, T) is called
the corner block. It should be noted that at the last block’s (ny,) deletion, when
there’s only one block left in the placement, the orientation and the T-junction
information of that block are not involved in the L and T lists. See Figure-7 for
the formation of the Corner Block List (dbaec,0010,001010)

The number of 1s in the T list corresponds to the number of attached T-
junctions and Os are used to separate each string of 1s from the record of the next
block deletion. Also, the 1s in the L list represent the horizontal orientations
and the Os represent the vertical orientations. [3].
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Figure-7: From (a) to (e) deletion of a packing (f) the corresponding CBL =(S, L, T)
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The numerical results about the complexity and the performance of the above
methods are given as follows: The upper bound of the number of possible com-
binations for Polish expression is O(n!23"73 /n!-%) and the time required for the
transformation of the representation to a physical packing is O(n). Those values
are also valid for the corner block list (CBL).The combinations for the sequence
pair (SP) is O(n!?) and the transformation time is O(nlglgn). The combinations
and the transformation time for B* tree and O-tree are O(n!22"~2/n!%) and
O(n) respectively. Although these values are the same for B*trees and O-tree,
one should keep in mind that an O-tree is irregular and has unpredictable num-
ber of branches that causes higher operation complexity and/or high encoding
cost[3].

Comment

Non-slicing floor plan problems are much harder than slicing floor plan prob-
lems, which generally have solutions not optimal but can be handily represented
and manipulated, so in this study the slicing floor plan techniques are going to
be analyzed and evaluated[3].
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3 Genetic Algorithms

3.1 Biological Background

3.1.1 Chromosomes, DNA and Genes

In the nuclei of every cell of living organisms there exist structures called
chromosomes which supply the genetic information that is inherited from the
ancestors to the offspring. Chromosomes are made up of DNA strands and
proteins, which wrap these strands tightly[14].

DNA is a long polymer composed of units called nucleotides. Nucleotides
are the organic compounds each of which consists of a nitrogenous base, a
five carbon sugar (deoxyribose for DNA) and a phosphate group. DNA usually
appears as a pair of strands associated in the shape of a double helix(See Figure-
8). Each strand contains units of inheritance called genes[1].

Genes are located on particular positions called locus on the DNA strands.
They are the functional blocks of DNA. They encode the genetic information
needed in carrying out the process of building the proteins used in performing
body functions and indicating several traits like eye color. A gene encodes the
genetic information as a sequence of the four different nucleotides named after
the bases they contain, A (Adenine), T (Thymine), C (Cytosine) and G (Gua-
nine)(See Figure-9). These coding sequences - in other words the alternative
forms of a gene are called alleles[14].

The complete set of chromosomes in a cell of an organism is called the or-
ganism’s genome. Genotype is the certain set of genes in a genome. Under the
influence of the environmental conditions, genotype determines the physical and
mental properties of an organism known as the phenotype[8]
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Figure-8: The double helix. Retrieved May 8, 2008 from
http://www.gl obal change.umich.edu/gl obal changel/current/l ectures
/selection/sel ection.html
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Figure-9: A nucleotide sequence in a DNA molecule

3.1.2 Crossover and Mutation

Organisms inherit traits from their parents in the form of genes. Both of the
parents supply a group of chromosomes to their offspring. When the chromo-
somes pair up, they exchange sections of their DNA. Thus, the offspring don’t
carry exactly the same genetic information with their siblings and parents. This
process is called the crossover.

In addition to the genetic diversity obtained through crossover, variations
can also be caused by mutations. Mutations are the heritable changes of the
genetic material that may be caused by the erratic copying of the genetic ma-
terial during the cell division, exposure to the ultraviolet or ionizing radiation,
chemical mutagens etc[10].

3.1.3 Natural Selection

Natural selection is the process that enables the opportune heritable traits to
be passed to the successive generations of a population more commonly than the
inopportune heritable traits due to the differential reproduction of genotypes.
This process is mainly active on the observable characteristics of the organisms,
phenotypes. The individuals with convenient phenotypes are more likely to
survive and pass their traits to the successive generations by reproduction than
the other individuals. Thus, the frequency of the genetic basis of the phenotype
i.e. the genotype increases over the following generations. In the long run, this
process may cause adaptations of a species to a specific environment and a new
species may emerge eventually[6].

3.2 Genetic Algorithms

Genetic algorithms were proposed by John Holland in 1962 as a special class
of evolutionary algorithms and developed by Holland and his colleagues at the
University of Michigan in the 1960s and 1970s. Different from the other evolu-
tionary algorithms designed for solving explicit problems, the aim of the genetic
algorithms was to improve the comprehension of natural adaptation process and
to design artificial systems similar to the natural systems|[8].

Traditionally, the algorithm starts with the generation of a random popula-
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tion. Every individual of the population represents a solution to the problem.
During each generation, the fitness of each individual is computed by a fitness
function defined in the first place. Then the genetic operators, crossover and
mutation, are applied to the individuals to evolve the population. Usually the
algorithm continues until reaching the maximum number of generations declared
or an adequate fitness level settled for the population.

Thus, the three basic aspects in using genetic algorithms are:

e Definition of the genetic representation
e Definition of the fitness function

e Definition of the genetic operators

3.2.1 Genetic representations

In order to use the algorithm effectively, one should choose the encoding of
the solutions cautiously. Strings of bits, arrays, trees, lists and sequences can
be used as representations, but it should not be ignored that the choice of a
representation can affect the performance and the cost of the algorithm in a
noticeable way.

Here are some examples of different genetic encodings:

e Binary encoding

Binary encoding is the most classical form of encoding. According to
binary encoding, every gene has two alleles: 1 and 0. For instance, if the
knapsack problem that objects to maximize the value of items that can
be put in the knapsack, which has a certain capacity, is considered, the
bits in the encoding represent the status indicating the presence of the
relevant items in the knapsack|[7].

Chromosome A: 11010010110010
Chromosome B: 10111100101110

e Permutation encoding

Permutation encoding can be used in solving a well-known problem called
the Traveling Salesman Problem (TSP). TSP objects to minimize the
amount of distance taken in traveling all the given cities. It is used as
a model problem for several problems such as the pen movement of a
plotter, drilling of printed circuit boards (PCB), real-world routing of
school buses, airlines, delivery trucks and postal carriers. Moreover, TSPs
have been used in the study of biomolecular pathways, routing a com-
puter networks’ parallel processing, cryptography, determining the order
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of exposures required in X-ray crystallography and in adjusting routes
searching for forest fires. According to this encoding, every gene has 7
alleles each of which represents a city to be traveled|[7].

Chromosome A: 2561347
Chromosome B: 7651324

3.2.2 Fitness function

The fitness function evaluates the quality of each solution and helps to find
the best solution through evolution. Fitness function determines how often a
solution will be selected for crossover.

According to a well-known selection method called fitness-proportionate se-

lection, the expected number of times an individual is selected for crossover is
its fitness [8]

average fitness of the population

Roulette wheel method described in Section-3.3 is also based on the fitness-
proportionate selection method.

3.2.3 Genetic operators

Genetic operators play a very essential role in finding the best individual of
the population step by step. Crossover and mutation are the principal genetic
operators.

The objective of the crossover is to inherit the good properties from the an-
cestors to the offspring and the objective of the mutation is to create diversity in
the population and to prevent the algorithm being captured by a local optimum.

Here are some examples of several crossover and mutation techniques im-

proved according to different types of genetic representations|7]:

e When binary strings are used in representing the solutions, the crossover
is done through the division of the parent strings by one or more selected
crossover points and the mutation is done through the inversion of the
selected numbers as shown below.

— Single-point crossover

10011011 + 11011101 = 10011101

— Two-point crossover

10001001 + 11011111 = 10011001
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— Mutation

11100110 — 00111011

e When permutations are used in representing the solutions, the crossover
is done through the selection of single points in permutations and the
mutation is done through the inversion of the selected numbers as shown
below.

— Crossover
(435768) 4 (453786) = (435786)

— Mutation
(345687) — (365487)

16



3.3 Some Important Terms

e Population size
Population size is a significant parameter of a genetic algorithm. It corre-
sponds to the number of individuals generated in a generation[3].

e Crossover probability

Crossover probability conveys how often the crossover will take place. If
this probability is 0 percent, then the new generation will be the exact
copy of the old one when the mutation is discarded [3].

Mutation probability
Mutation probability conveys how often the chromosomes will be mutated.

Note that the mutation probability is often kept smaller than the crossover
probability in order to prevent the genetic algorithm from becoming a
random search engine[3].

Elitism

Elitism is the preservation of the individual with the best fitness in a
generation to keep the individual of high quality.[7].

Roulette Wheel Selection

Roulette Wheel selection is a technique commonly used for selecting the
chromosomes that will cross over. It is based on the idea of selecting the
individuals with high fitness more often than the others.

@ Chromosome 1
B Chromosome 2
O Chromosome 3
O Chromosome 4

Figure-10: Roulette Wheel Selection. Retrieved May 8, 2008 from
http://www.obitko.com/tutorial s/geneti c-algorithms/index.php
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In the figure above, every chromosome shares a slice increasing in size pro-
portionally to its fitness value. According to the roulette wheel selection,
the chromosome with the biggest share is more likely to be chosen]8].

Assume that a marble is being thrown onto the disc to select a share.
Then it is clear that the chromosome with a bigger share (higher fitness)
is more likely to be selected.

18



3.4 Applications of GA

Genetic algorithms are applied to a great number of scientific and engineering
problems. Here are some of the well-known application areas of GAs.

e Optimization: Genetic algorithms are widely used in numerical optimiza-
tion and combinatorial optimization. Traveling salesman problem, job-
scheduling problem, circuit design optimization problems are some of the
combinatorial optimization problems genetic algorithms are applied to[8].

e Automatic Programming: Genetic algorithms are used in the evolution of
computer programs for certain tasks and the design of some computational
structures such as cellular automata[8].

e Machine and robot learning: Genetic algorithms are used in a plenty
number of machine-learning applications and protein structure prediction.
Furthermore, they are used in the design of neural networks, in the evolu-
tion of rules for learning classifier systems or symbolic production systems,
and also in the design and controlling of robots|8].

o Immune system models: Genetic algorithms are used in modeling vari-
ous aspects of the natural immune system such as the somatic mutation
throughout the lifetime of an individual and the discovery of multi-gene
families in the evolution period|[8].

e Economics: Genetic algorithms are used in modeling innovation pro-
cesses, evolvement of bidding strategies and the emergence of economic
markets|[8].

e Fcological models: Genetic algorithms are used in modeling ecological
phenomena such as biological arms races, host-parasite co-evolutions and
resource flow in ecologies[8].

e Population genetics models: Genetic algorithms are used in the studies
related with population genetics. For example, the answer to the question
asking for the necessary conditions for the evolutionary viability of a gene
for recombination is searched for by using genetic algorithms|[8].

e Interactions between evolution and learning: Genetic algorithms are used
in the study of the interaction between the individual learning and species
evolution[8].

e Social systems: Genetic algorithms are used in the studies of several evo-
lutionary aspects of social systems, such as the evolution of cooperation
and communication in multi-agent systems[8].
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An outline of a genetic algorithm

e Step-1 Generate a random population of n chromosomes
o Step-2 Compute the fitness(x) for each chromosome z
e Step-3 Repeat the following for creating a new population

— Select two parent chromosomes from the population depending on
their fitness

— Cross over the parents to form an offspring with a crossover proba-
bility p.

— Mutate the offspring with a mutation probability p,,
— Add the new offspring to the newly generated population

e Step-/ Replace the old population with the newly generated population
e Step-5 Check the end condition.

— If the condition is satisfied, stop the search and return the individual
with the best fitness value.

— If the condition is not satisfied, go to Step-2

The complete set of generations is called a run. One or more chromosomes
with high fitness are generated at each run[8].
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4 Genetic Algorithms Applied to the Floorplan
Area Optimization Problem

As mentioned in the first section, the objective of the floorplan area optimiza-
tion problem is to find the minimum area covering a given set of rectangular
modules avoiding the possible overlaps.

We will mainly focus on the case where each solution of the problem i.e. each
bounding rectangle is represented by a Polish expression. Thus, chromosomes
are encoded by Polish expressions.

Although defining a chromosome as a Polish expression is a quite common
technique, genetic operator definitions have been evolving to improve the quality
of the solutions and accelerate the search process.

Here is a definition of some crossover operators used by Cohoon et al(1991)
and Tazawa et al(1996).

Crossover operators

e Operator-1

Let P1 and P2 be the chromosomes to be mated to produce the new
chromosome O1. This operator copies the operands from P1 to O1 and
the operators from P2 to the available positions in O1 in their original
order. This can be illustrated as follows:

Pl:abxdc+ ex+fg*+hi+ xj+
Ol :ab+dc+ex*fg+ xhi+ xjx
P2 : jhbc+ d+ ae * f x g + *i 4 *x

e Operator-2

This operator works similarly to the Operator-1. It copies the operands
from P2 to O2 and the operators from P1 to the available positions in O2
in their original order. This can be illustrated as follows:

Pl:abxdc+ e*x+fg*xhi+ xj+
02 : jhbcx d+ ae x f + g * *i + *+
P2 : jhbc+ d + ae x f* g + *i + *x

e Operator-3

This operator works slightly different from the preceding ones. Firstly,
it copies the operators from P1 to O3 and then picks up a substring of
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P1 and copies the operands of the substring to the corresponding places
in O3. Finally, it copies the operands not included in O3 from P2 to
the appropriate places in O3 keeping their order unchanged. This can be
illustrated as follows:

P1:abxdc+ex + fg**hi+ *j+
O3 : jhxdc+ ex +ba * xfg + *i+
P2: jhbc+ d+ ae x f x g+ *i + *x

Comment

Random use of these operators prevents the offspring from inheriting the
ancestors’ good properties. Thus, good solutions cannot be found efficiently.

Another crossover operator which is more effective in finding good solutions
more hastily is defined by Chen et al (2006). This operator is based on the idea
of extracting and then growing the good subtrees from the parent chromosomes.
Good subtrees are the area efficient subplacements.

Area efficiency is determined by the fitness function. The fitness of a chro-
mosome P is:

Arear — ZBieR,1<:i<:n ATeaBi

fitness(P) = Arean

where Areapr is the area of the placement corresponding to P and Areap, is
the area of the 74, module.

The fitness of a placement is the measure of the ratio of the dead area to the
area of the placement. Thus, the fitness value is inversely proportional to the
area of the placement.

Consequently, a good subtree is defined as the subtree that has a fitness
value smaller than or equal to a predefined threshold value Vg .

Crossover operator

Let P1 and P2 be two chromosomes and n(P1) and n(P2) be the number
of the good subtrees they have respectively.

Firstly, the good subtrees of the chromosome with higher n() values are
extracted and carried to the Good subtree Pool, GsP. Then the good subtrees
of the other chromosome that don’t have the modules already put into GsP are
carried to GsP. After that, the modules which are not contained in any of the
good subtrees in GsP are put into GsP under the name of degenerated subtrees
denoted by Gsd.
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After the determination of the good subtrees and construction of the GsP,
good subtree growing period begins. There are three stages in this period. In
the first stage, two degenerated subtrees are merged vertically or horizontally
to form an enlarged subtree and the fitness of the new subtree is calculated by
using one of the fitness functions below in accordance with the orientation of
mergence.

o If the degenerated subtrees Gsd(i) and Gsd(j) with the dimensions (w;,
h;) and (wj, h;) respectively are merged vertically to generate the subtree
S . The fitness of the newly generated subtree S is:

(hl + hj)max(wi, wj) — (hlwl + hjwj)
(hi + hj)maz(w;, w;)

fv(S) =

e If the degenerated subtrees Gsd(i) and Gsd(j) with the dimensions (w;, h;)
and (wj, h;) respectively are merged horizontally to generate the subtree
S . The fitness of the newly generated subtree S is:

(w; +wj)max(h;, hj) — (hyw; + hjw;)
(w; + wj)max((hs, hy)

fu(S) =

In the second and third stages, the same procedure is applied to the good
subtree-degenerated subtree and good subtree-good subtree duples respectively.
Consequently, the newly generated subtree is evaluated as follows:

e If the fitness value is smaller than the threshold value, then the generated
subtree is put into the G'sP replacing the generating subtrees.

e If the fitness value is larger than the threshold value, then the other ori-
entation of mergence is applied to the subtrees and the new fitness value
is calculated.

— If the new fitness value is smaller than the threshold value, then
the generated subtree is put into the GsP replacing the generating
subtrees.

— If it is still larger than the threshold value, then the generated subtree
is discarded.

During this period, subtrees are allowed to rotate to increase the rate of
mergence. Subtree rotation is performed in two steps. In the first step, the
relational operators are mutually converted. In the second step, two subtrees
associated with two sibling subtrees rooted at the relational operator + are
swapped.

The good subtree growing period is followed by the chromosome reviving
period. In this period, the threshold value Vg is gradually increased and for
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each new Vg value good subtree growing period is repeated until a complete
chromosome is generated in the GsP.

Once the complete chromosome is generated, its fitness value is compared
with the fitness values of P1 and P2. If its fitness value is better than the fitness
value of P1 (or P2), it replaces P1 (or P2); otherwise it is neglected.

Here’s an application of this crossover technique:
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Comment

By extracting and growing good subtrees, the good properties of the an-
cestors are inherited to the offspring. Thus, the deficiency of the preceding
crossover techniques is covered.

Also note that the final chromosome is always feasible as the crossover oper-
ator always generates feasible chromosomes when applied to two feasible chro-
mosomes. Thus, the newly obtained placement is a feasible solution to this
problem. As a result, there is no need to use any repairing techniques to pro-
vide feasibility.

In addition to the crossover operations, some mutation operations are applied
randomly in order to avoid the local optima.

Mutation

The mutation operators mentioned by Chen et al (2006) are as follows.

e Operator-1(complement)

The relational operators in the Polish expression are mutually exchanged.

e Operator-2(exchange)

A pair of subexpressions is exchanged.

e Operator-3(rotate)

A module is randomly rotated as described in the good subtree growing
step.

Here’s the overall procedure of the proposed genetic algorithm implemented
in C4++ programming language on a PC with P4 1.8 GHz CPU by Chen et
al (2006). It’s applied to MCNC (Microelectronics Center of North Carolina)
benchmarks and the results are compared with the ones obtained by using B*
tree (Cheng et al., 2000), CBL (Hong et al., 2000), SP (Nakaya et al., 2000;
Chrzanowska et al., 2002) methods (See Table-I).
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Genetic algorithm I

Input: A set of modules myi, msy,..,my,

Output: An area-efficient placement

Constraint: No modules are duplicate and overlapping
1.Randomly generate a set of chromosomes;

2.Evaluate each chromosome in the population;
3.Initialize the threshold value Vg

4 WHILE ( NOT satisfy stop condition)

begin

5. FORiIN 1 TO R¢*popsize LOOP

6. Randomly choose P; and P, from the population;

7. Crossover(P1,P2);

end FOR LOOP

8. FOR i IN 1 TO R,;*popsize LOOP

9.Randomly choose P from the population;
10.Mutation(P);

end FOR LOOP

11. IF (period)THEN Increase Vg by a little value A;

end

26



Table-l

Non-Sliceable Sliceable

Engine Simulated Annealing EA GA GA
Pres. B*-tree CBL SP SP PE (ours)

(Changetal, (Hongetal, (Chrzanowskaetal, (Nakayaetal,

2000) 2000) 2002) 2000)

Time Area Time Area Time Area Time Area Time Area

(sec) (mm®) (sec) (mm®) (sec) (mm®)  (sec) (mm?) (sec) (mm?)
apes 7 4692 NA NA NA NA NA NA  <l(<l) 4692(46.92)
xerox 25 1983 30 2096 NA NA NA NA  <l(<l) 20.36(20.36)
hp 55 895 NA NA NA NA NA NA  <l(<l) 917(9.15)
am33 3417 127 36 12 574 12 1118 121 13(743) 1.23(1.19)
amid9 4752 368 65 385P 16921 3692 1978 37.14  37.03(19) 36.82 (36.40)
Teso6 NA NA 86 238 NA NA NA NA  63(5593) 241(235)
Test99 NA NA 110 367 NA NA NA  NA  95(63.13) 3.68(3.55)
TestI98 NA NA 165 751 NA NA NA NA  99.16(49) 7.77(743)
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Comment

As aresult, it is concluded that a sliceable representation can be more advan-
tageous than the non-sliceable representation based techniques (B* tree, CBL)
when it is used with a well-designed search engine.

In another genetic algorithm applied to the floorplan area optimization prob-
lem (Rebaudengo and Reorda, 1996), some new genetic operators called heuris-
tic operators are introduced along with the crossover and mutation operators
used in the algorithm constructed by Cheng et al (2006) so as to improve the
effectiveness of the method.

Here are some of the basic properties of this algorithm:

e Each population consists of P different individuals. I number of new
individuals are produced at each generation. In order to avoid population
homogeneity, maximum number of individuals having the same amount of
area is fixed and every individual is different than the others in the same
generation.

e Each individual is related with a list of implementations ordered for the
ascending values of the aspect ratio i.e. width/height.

e Each individual is represented by a string of n genes where n denotes the
number of the modules constituting the floorplan and every gene in the
string represents the implementation selected as the implementation of
the related module from its list of implementations.

e The fitness function is obtained from the floorplan area through lineariza-
tion. The individual with the maximum area is assigned the maximum
fitness value S and the individual with the minimum area is assigned the
minimum fitness value 1. The other individuals’ fitness values change
within the range (1,S5). S is known as the selection pressure as its in-
crease results in the ascension of the fitness values and consequently this
decreases the probability of the selection of the worst individuals.
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The representative code of the overall algorithm is as follows.
Genetic algorithm II

Py= create_initial_population();
compute_initial fitness();

1=0;

while(stopping_condition() # TRUFE)
{

A=PF;

for j=0to I

{ /* new element generation */

op= select_an_operator();
sz-:apply,operator(op, P;);

A=ATU s;,

J=i+1

}

compute_fitness(A);

P;+1 = (the P best individuals eA);
1=1+1;

}
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Crossover operator

Crossover operator used in this algorithm selects the individuals by using
the roulette wheel selection technique so that the individuals with high selec-
tion probability are chosen. Then, two numbers ¢ and j in the range (0,n)
satisfying i < j are randomly selected as the crossover points. After that, the
new individual is generated by using the implementations of X from 0 to i and
from j + 1 to n and the implementations of Y from ¢ + 1 to j (See Figure-11).

Mutation Operator

Mutation operator aiming to explore the obscure regions of the search space
randomly selects an individual. Then, the mutation takes place in three ways:

e By changing the value of a selected gene (See Figure-12(a))

e By generating an integer k and then randomly changing the genes k, 2k, 3k, ..
(See Figure-12(b))

e By choosing the next implementation in the implementation list for each
gene. This corresponds to the rotation of all the modules (See Figure-
12(c))

1 2z 2 4 5 6 F & 9 .10 'kl

x BT

i Xover ]

Figure-11: Two cuts crossover
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Figure-12: Mutation operators a) concerning a single gene b) several genes and c) rotation
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Heuristic Operators

Heuristic operators operate on randomly chosen individuals to improve their
fitness values. There are two heuristic operators defined in obtaining the hybrid
genetic algorithm connecting the heuristic operators to the genetic approach.

o Operator-1 (HO):

This operator evaluates all the implementations for a randomly selected
module and replaces the current implementation by the implementation
most suitable to the minimum floorplan area (See Figure-13).

o Operator-2 (HO3):

This operator works on the horizontal and vertical adjacency graphs.
When a non-slicing floorplan is considered, the horizontal adjacency graph
is the graph where the vertices correspond to the vertical edges of the
floorplan and the arcs correspond to the implementations for the basic
modules, and the vertical adjacency graph is the graph where the vertices
correspond the horizontal edges of the floorplan and the arcs correspond
to the implementations for the basic modules (See Figure-14).

A floorplan’s height and width are assessed by the lengths of the longest
paths in the vertical and horizontal adjacency graphs respectively. These
paths can be defined as vertical and horizontal critical paths. HOs selects
all the blocks in either of these paths leaving the common blocks of the
paths out. Then in order to shorten the path, the implementation of
each of these blocks is replaced by the preceding implementation in its
implementation list if the blocks belong to the horizontal critical path and
by the following implementation in its implementation list if the blocks
belong to the vertical critical path. If the critical path is unique in the
relevant direction and the size of the floorplan doesn’t change in the other
direction after this process then the floorplan area will be decreased (See

Figure-15).
I H H - -
,_-—-//

-——

i

Figure-13: A floorplan. a) before and b) after the application of HO1
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Figure-15: HO2 applied to afloorplan. @) afloorplan, b) vertical adjacency
graph, ¢) horizontal adjacency graph, d) better result and €) worse result
obtained by the application of HO2
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In Figure-15, the vertical critical path is consist of the modules A and D
and the horizontal critical path is consist of the modules A, E and C. Thus,
the length of the horizontal critical path is 12 and the length of the vertical
critical path is 11 and the resulting floorplan area is 132. HOs replaces the
current implementation for the modules E and C by the preceding ones in their
implementation lists and for the module D by the following one in its implemen-
tation list. The length of the new vertical critical path is 10.8 and the length of
the new horizontal critical path is 10.4, thus the floorplan area is decreased to
112.32 (See Figure-15(d)).

On the other hand, the new implementation for a block reducing the critical
path’s length in one direction can transform a path in the other direction into
a critical path. In Figure-15(e), it’s assumed that the module D’s following
implementation’s dimensions are 10.5 and 2. Although the length of the vertical
path is reduced to 10, a new horizontal critical path consisting of the modules
D and C is formed and the resulting floorplan area is increased to 137.

This algorithm called GALLO (Genetic Algorithm for Floorplan Area Op-
timization) is applied to 6 medium-large size benchmarks, namely P40, P49,
P120, P245, P1225 and P5000. A maximum aspect ratio (w/h) of T and m
implementations with aspect ratios varying between T and 1/T" are used for all
the benchmarks except P120. For P120, T is taken as 2 and 30 implementations
are used. In order to evaluate the effectiveness of the algorithm, the stopping
condition of each experiment is defined to be reaching a steady state i.e. the
state when the best solution remains unchanged for a fixed number of genera-
tions. Each experiment is repeated for 10 times and the average of the results
are computed to avoid the randomness[11].
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Table-11

Basic Algorithm Improved Algorithun
Example Wiorst Average Best Worst Average Best
P40 682 677 674 574 674 674
P4c L] 3,233 3.233 3,233 3.233 3,233
P120 9,654 7.872 7.216 7,621 7,450 TS
P245 4,691 4,680 4,687 4,688 4,688 4,687
P1225 41.726 41,716 41,710 41.711 41,711 431,710
FP5000 410,710 406,740 | 404.270 398,475 3598.441 398,382
(a)
Basic Algorithm Improved Algorithm
Example Worst Average Best Worst Average Best
P40 14,000 10.600 6,000 5,000 5.600 4,000
Pag 8.000 7.000 6,000 6,000 4,400} 4,000
P120 24,000 15,600 &, 000 14,000 10,400 8,000
P245 14,000 13.000 10.500 2.500 2.050 1,500
P1225 43,500 38,100 33.000 7.500 3,750 3,000
P5000 410,000 356,500 330,000 30,000 17,250 15,000
(b)
1 Basic Algorithm Improved Algorithm
Example Waorst Average Best WWorst Average Best
B40 3.5 2.65 2.0 3.0 27 1.4
P49 3.2 2.4 2.1 2.8 2.3 2.0
F120 15.0 5.4 357 10.2 7.57 5.8
P245 24.4 22.6 187 7.7 6.2 5.1
P1225 232.8 219.6 191.4 101.1 50.5 391
PS000 7.530 6.314 3,810 1,329 757 656
(<)
Table-1l1
Area Generations | CPU Time [s]
No heur. op. 41,716 38,100 219
HO1 41,714 13,500 72
HO2 41,713 5,200 60
HO1 + HO2 41,711 3,750 50
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Comment

Consequently, it is ascertained that the heuristic operators accelerate the
search and enable achieving the optimal solution at a low computational cost.
Additionally, more stable results have been obtained by the improved algorithm
(See Table-II).

For a further comprehension of the benefits of the heuristic operators; a
detailed analysis of P1225 is made (See Table-IIT)[11].

As seen in the above tables, the cooperation of HO; and HQO> resulted in
a slight improvement of the floorplan area in a reduced number of generations
and CPU time.

On the other hand, heuristic operators are not determined to be accelerating
factors throughout the whole run. They are completely ineffective at the final
phases. As the local optimum implementation of each module has been already
found, the contribution of HO; is hindered. Additionally, the great number of
critical paths and blocks belonging to both the horizontal and vertical critical
paths impedes the beneficial use of HOs.

Therefore, for an efficient use of these operators an activation probability
control mechanism has been developed. This mechanism is based on activating
the operator with the higher activation probability. Activation probabilities are
initially computed due to the costs of the operators. The cost of HO; is the
number of times it computes the evaluation function for each module i.e. for n
modules each of which possesses m implementations the cost of HOq is n * m.
On the other hand, HOs’s cost is assessed by its complexity. HQOs makes a
longest path search twice in the graph so its complexity is O(n?).

Moreover, as stated before, the effectiveness of the operators are not fixed
throughout a run, so a monitoring system is used to observe the changes in
their effectiveness. As the activation probability of the most effective operator
in a generation is increased, the activation probability of the other operator is
decreased. The amount of change is inversely proportional to the operator’s
cost.

Different from the preceding algorithms, sometimes wirelength minimization
is also taken into account in floorplan design problems as mentioned in the
Introduction section. A genetic algorithm constructed for such a floorplan de-
sign problem is named GAPE which is inspired by an evolutional idea called
punctuated equilibria and is aiming to use large scale, distributed memory,
message-passing and parallel processing systems[5].

Punctuated equilibria is established upon two principles: allopatric specia-
tion and stasis. Allopatric speciation is based on the evolution of a new species
after the differentiation of a small set of members of a species to a new environ-
ment and statis claims that after reaching the equilibria in an environment the

36



genome of the species does not change remarkably(5].

According to this method, each module is represented by (A;,1;,u;) where
A; is the area of the module and [; and u; are the lower and upper bounds on
the valid aspect ratio respectively. A floorplan consisting of m modules and
bounded by a rectangle R is divided into non-overlapping rectangular regions
by horizontal and vertical cuts. Each region is denoted by r; and should be
large enough to comprise the relevant module i.e. A; <= x; *x y; where x; is the
width and y; is the height of the region r;. The objective function contains two
components: a total area component and a weighted wirelength component.
The evaluation of a floorplan is expressed in its score which is computed as
follows:

m m
Score = leyl +A Z Cijdi;
i=1

4,j=1

where d;; denotes the distance between the centers of the modules r; and
rj , cij denotes the associated cost value of each connection between modules,
which is equal to O if there’s no connection between the relevant modules, and
A denotes the relative significance of the total area and the wirelength. It is
assumed that A = 1 by Cohoon et al. The best solution of the floorplan design
problem is defined as the one with the minimum score[5].

Punctuated equilibria exhibit an efficient way of generating a new species
which is drawing an old species to a new environment. According to the al-
lopatric speciation, a continuous evolution is obtained by introducing the sta-
bilized species to different environments. GAPE is related to the punctuated
equilibria in the following way:

Each processor is considered as a disjoint environment and after a fixed
number of generations some qualified species emerge. Then, as a result of a
catastrophe some adjacent environments unite and form new environments. The
amount of change occurring during the catastrophe period is controlled by the
S factor in the structure given below.
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Here’s the genetic algorithm each processor uses:
initialize
for E iterations do

parfor each processor i do
run GA for G generations

endfor

parfor each processor i do
for each neighbour j of i do
send a set of solutions, S;;, from i to j

endfor

endfor

parfor each processor i do
select an n element subpopulation

endfor
endfor
Crossover Operators
Let P1 and P2 be the parents reproducing the offspring O.
e (C'O;: The operands from P1 and the operators from P2 are copied to the
offspring O(See Figure-16).

e (COs: The operators from P1 and the operands from P2 are copied to the
offspring O(See Figure-17).

e (COj3: Firstly the operators from P1 are copied to O. Then a subtree
s1 = (b1, el) of P1, which is the substring beginning with the module b1
and ending with the modules el, is selected and copied to O. Finally the
remaining operands from P2 are copied to O(See Figure-18).

e (C'O4: Differs from the other ones by producing two offspring, O1 and O2.
Firstly, substrings s1 = (b1, el) and s2 = (b2, €2) are selected from P1 and
P2 respectively. It should be confirmed that the lengths of these strings
are the same. Then, for the reproduction of O1, operators are copied from
P1 and the values of P2(b2+1) are assigned to O1(b1+1) for (0, el —b1).
Finally, the operands of P1 are assigned to O1(¢) for i < bl or i > el.
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The offspring O2 is reproduced in the same fashion by replacing P1 by
P2 and P2 by P1(See Figure-19).

The crossover operators are selected randomly in the experiments made by using
GAPE as it is confirmed that best average scores and best found scores are

obtained this way.
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Mutation

Mutation is done by the modification of a single individual locally. The meth-
ods of mutation are: swapping two adjacent operators, switching a sequence of
adjacent operators and swapping an operator with a neighboring operand.

Comment

This algorithm is compared to a commonly used optimization technique SA
(Simulated Annealing) and its performance is deduced to be better regarding
the solutions’ average computational cost and best-found solutions[5].
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5 Conclusion

In this study, floorplan area design representations are defined and their ef-
fects on the performance of the optimization problem are discussed. The imita-
tions of the natural evolutionary systems to the artificial systems are put forward
by means of the genetic algorithm techniques applied to the floorplan optimiza-
tion problem. The process of finding qualified solutions with low computational
costs is analyzed and the development of the genetic algorithms applied to the
floorplan area optimization problem is observed.

Consequently, it is deduced that natural evolutionary systems set a sig-
nificant model for solving optimization problems. By the application of the
evolution theory to the real-world problems, effective results can be obtained.
Although the idea seems to be easily recognizable, the methods needs to be
elaborative in order to reach satisfying solutions in reasonable CPU times.

On the other hand, the formulation i.e. the encoding is one of the most
important steps in genetic algorithms. One should be cautious in determin-
ing the encoding that fits the relevant problem to avoid working in a complex
environment with enormous runtime.
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