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THE DERIVATION OF THE DIELECTRICAL BREAST MODELS FROM 

MRI IMAGES FOR BREAST CANCER DETECTION 

SUMMARY 

In this study, the objective is the investigation of the electrical properties’ variations 

in the breast tissues in order to exhibit the heterogeneity of the breast tissues and the 

dispersive nature of the dielectric properties across the breast. In line with this 

purpose, MRI based breast models, which will presumably assist the breast cancer 

research carried out at microwave frequencies, were constructed. For precise results, 

several imaging processes such as the application of various smoothing and edge 

detection filters to the MRI images, which were obtained from Euromed Radiology 

Centre and Maltepe University, took place and MRI intensity values were 

transformed into uniform grids of dielectric values by using the MRI intensity 

histograms. Histograms were utilized in interpreting the tissue distribution of the 

relevant breast image and Gaussian curves were plotted to perceive the diversity 

between the two baseline breast tissue types, namely fibroglandular and fatty tissues. 

Then, the Gaussian mixture model and the basic statistical definitions were used in 

order to determine the intensity intervals. Afterwards, the intensity intervals 

computed were matched with the tissue–dependent dielectric intervals, subsequently, 

the intensity values were mapped to dielectric values, namely, dielectric constants 

and conductivity values, via piecewise linear interpolation and cubic spline 

interpolation. The dielectric distributions obtained from both of the approaches are 

compared and the resulting figures and graphs are illustrated here. Consequently, it is 

noticed that the piecewise linear interpolation results in a more scattered dielectric 

value distribution whereas cubic spline interpolation depicts a high contrast between 

the tissue regions.   It is deduced that both of the methods give efficient results and 

realistic electrical breast models can be obtained from MRI images via these 

methods. 
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GÖĞÜS KANSERĠ TETKĠKĠ ĠÇĠN MRI GÖRÜNTÜLERĠNDEN 

DĠELEKTRĠK GÖĞÜS MODELLERĠNĠN ÇIKARIMI 

ÖZET 

Bu çalışmada, amaç göğüs dokularının heterojen yapısını ve dielektrik özelliklerin 

göğüs içerisindeki değişken dağılımını gözlemleyebilmek için göğüs dokularının 

elektriksel özelliklerinin incelenmesidir. Bu amaç doğrultusunda, mikrodalga 

frekanslarda yürütülen göğüs kanseri çalışmalarında kullanılmak üzere MRI tabanlı 

göğüs modelleri oluşturulmuştur. Hassas sonuçlar elde edebilmek için, öncelikle 

Euromed Radyoloji Merkezi ve Maltepe Üniversitesi’nden alınan MRI görüntülerine 

pürüzsüzleştirme ve kenar belirleme filtreleri gibi çeşitli görüntü işleme teknikleri 

uygulanmış ve sonra MRI intensite değerleri MRI intensite histogramlarından 

yararlanılarak üniform bir dielektrik değer dağılımına dönüştürülmüştür. Bu 

kapsamda, histogramlar ilgili göğüs görüntüsünün doku dağılımı hakkında bilgi 

edinilmesinde ve Gauss eğrileri de iki temel doku türü olan yağ ve fibroglandular 

doku arasındaki ayrımın belirlenmesinde kullanılmıştır.  Gauss karışım modeli ve 

temel istatiksel  tanımlar aracılığıyla intensite aralıkları belirlenmiştir. Bundan sonra, 

hesaplanan intensite aralıkları doku-bağımlı dielektrik aralıklarla eşleştirilmiş ve 

ardından parçalı lineer interpolasyon ve kübik spline interpolasyonu kullanılarak 

intensite değerleri dielektrik değerlere, diğer bir deyişle, dielektrik sabit ve iletkenlik 

değerlerine, dönüştürülmüştür. Burada, her iki interpolasyon sonucunda elde edilen 

sonuçlar karşılaştırılmakta ve elde edilen grafik ve şekiller gösterilmektedir. Sonuçta, 

parçalı lineer interpolasyon daha dağınık bir dielektrik değer dağılımı verirken kübik 

spline interpolasyonunun dokular arasında daha yüksek bir kontrast gösterdiği fark 

edilmiştir. Böylece, uygulanan her iki yöntemin de etkin sonuçlar verdiği görülmüş 

ve bu yöntemler aracılığıyla MRI görüntülerinden yararlanılarak gerçeğe yakın 

elektriksel göğüs modelleri elde edilebileceği kanısına varılmıştır. 
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1. INTRODUCTION 

Cancer is a kind of disease causing body cells to change and grow uncontrollably. 

Tumors are lumps or masses formed by cancer cells and named after the originating 

body parts. Breast tumors frequently encountered, known as benign, are not 

cancerous. Contrarily to the invasive or infiltrating cancerous tumors, they don’t 

grow and spread in an uncontrollable manner. Breast cancer emerges in lobules of 

the breast, which consists of milk producing glands, or in the ducts connecting the 

lobules to the nipple and spreads by passing through the duct or glandular walls and 

penetrating the surrounding breast tissues. The severity of invasive breast cancer is 

determined by the stage of the disease; that is, the extent or spread of the cancer at 

the time of the first diagnosis. Therefore, early diagnosis is of great import [1].  

American Cancer Society has declared that approximately 40,170 women had died 

from breast cancer in 2009. Breast cancer is the second most widespread cancer 

causing women deaths after the lung cancer. Moreover, according to the statistics of 

2009, 1,910 cases of breast cancer, which accounts for 1% of all breast cancers, have 

occurred among men [1]. The incidence of the cancer has risen 0.5% annually 

resulting in 1.35 to 1.45 million new cases casted by 2010[2]. 

To date, there is no accurate method for precluding breast cancer, because of which 

regular mammograms are very popular. The decline in the risk of death from breast 

cancer as a consequence of mammography has been exhibited by population based 

screening assessments and many random trials.  However, mammography does have 

limitations [1]. Approximately 70% of the tumors detected via mammography are 

benign. From 4% to 34% of the breast cancers are not detected by mammography 

[3].  

Moreover, mammography may lead to further tracking examinations such as biopsies 

as a result of false positive test results [1]. Additionally, although mammography is a 

very successful technique at detecting cancers on fatty breasts just as ultrasounds, it 

does not provide sufficient sensitivity on dense breasts where fibroglandular tissues 
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can conceal or be assumed as cancer [4]. Therefore, annual MRI screening 

supplementary to mammography is recommended to women at high risk by an expert 

panel assembled by the American Society in 2007. Thus, MRI tests suspicious cases 

encountered by mammography [1]. MRI can detect breast cancers hidden in 

mammography. Nevertheless, it is not replacing traditional mammography as a 

screening tool because of the relatively high running cost and high percentage of 

unsuccessful predictions as an imaging tool. However, it is used in addition to 

mammography in severe cases just as ultrasound, which is utilized in discovering 

whether a lesion noticed on a mammogram is a liquid cyst or a tumor [5], [1].  

However, none of the previously mentioned techniques can provide much reliable 

results in the diagnosis of small cancerous tumors.  A reliable detection necessitates 

the determination of a significant and steady contrast between malignant and normal 

breast tissues. It has been observed that the electrical contrast between the normal 

and cancerous breast tissues, especially the contrast between the malignant and 

normal tissues is more essential than the density contrast imaged by X-Rays. As a 

result, small tumors can be detected sensitively and suspicious areas can be specified 

as malignant or benign by benefiting from this contrast [3]. This study, which is 

based on the electrical properties of the breast tissues, is a part of the breast cancer 

detection research.  

The varying nature of the electrical properties of the breast tissues at microwave 

frequencies has inspired the engineers to make researches in breast cancer detection 

during the last decades. Apart from being sensitive and the specific in detecting small 

tumors, microwave breast cancer detection tests are superior to the other commonly 

used techniques. For instance, as ionizing radiation and breast compression are 

avoided, the process takes place in safer and more comfortable conditions [3].  

Currently, several methods operating at various microwave frequencies are 

investigated to distinguish small malignant tumors from the normal breast tissues 

accurately. The methods used in these researches are: passive, hybrid and active 

methods. Passive methods integrate radiometers to determine the differences in the 

temperature measurements in the breast in order to detect tumors due to the 

remarkable increase in their temperature. Hybrid methods use microwave energy to 

heat tumors in a fast and selective manner and ultrasound transducers to discover  
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pressure waves generated by the heated tissues’ expansion. Active methods are based 

on illuminating the breast with microwaves and measuring the transmitted or 

reflected microwave signals afterwards. One of the active microwave methods, 

microwave tomography, aims to reconstruct the whole dielectric breast profile by 

means of a forward and inverse scattering model. Nevertheless, it is restricted by 

resolution, the amount of theoretic information required, and the imaging technique’s 

substantial computational requirements. Another active microwave method, Ultra-

Wideband (UWB) Radar imaging, makes use of the reflected UWB signals in the 

determination of the location of microwave scatterers within the breast. Instead of 

reconstructing the whole dielectric profile of the breast as done in microwave 

tomography method, UWB Radar imaging follows the Confocal Microwave Imaging 

(CMI) approach in identifying the locations of scattering regions within the breast. 

Regions with high energy in the final images are predicted to be indicative of the 

cancerous tissues [6]. 

However, authoritative information about the dielectric properties of normal and 

diseased breast tissues at microwave frequencies has been limited. For modeling the 

propagation and scattering of microwave signals in the breast, accurate numerical 

breast models are needed. Commonly used breast models in modeling the 

propagation of electromagnetic signals in biological tissues are FDTD breast models. 

These breast models are expected to preserve the geometrical characteristics of the 

breast, the heterogeneity and the dispersive properties of the breast tissues [2]. 

During the enhancement of numerical breast models, MRI data based models have 

been noticed to provide more realistic distributions of the breast tissues compared to 

the models that assign the dielectric values randomly throughout the breast tissues.  

In the MRI data based models; dielectric values of the regions are assigned either 

directly or indirectly by using the intensity levels of the images. Accordingly, MRI 

data have become an efficient tool in establishing the dispersive nature of the breast 

tissues [2]. Several FDTD-based models have used MRI data in the construction of 

numerical phantoms. For instance, Time- Reversal (TR) based FDTD methods 

practiced in the breast cancer detection make use of realistic breast models derived 

from magnetic resonance imaging (MRI) data [7].  
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In this study, 2D anatomically realistic breast models illustrating the heterogeneity 

and the dispersive nature of  breast tissues were derived from MRI images and the 

varying dielectric properties across the breast tissues were assigned via piecewise 

linear and non-linear functions. Tissue-dependent dielectric properties of breast 

tissues were obtained from the intensity values of the filtered MRI images. 

During this process, tissue-dependent dielectric intervals were assumed to be the 

intervals published in [8]. Gaussian distributions were constructed to discern the 

distinction between the two main breast tissue types, namely, fibroglandular tissues 

and fatty tissues. The MRI images acquired from Euromed Radiology Center and 

Maltepe University are used as samples in the application of the derivation methods 

presented. The consequent breast models are expected to be utile in developing and 

testing the microwave techniques being enhanced for the breast cancer detection.  

1.1 Purpose of the Thesis 

In this study, it is aimed to investigate the electrical properties’ variations in the 

breast tissues to exhibit the heterogeneity of the breast tissues and the dispersive 

nature of the dielectric properties across the breast. In line with this purpose, MRI 

based breast models, which will assist the research in breast cancer detection carried 

out at microwave frequencies, were constructed. For precise results, MRI images 

were firstly enhanced through several imaging processes and then MRI intensity 

values were transformed into uniform grids of dielectric constants and conductivity 

values by means of the MRI intensity histograms. Gaussian curves were drawn to 

perceive the diversity between the two main breast tissues. In the end, the purpose is 

fulfilled by using the mappings from intensity intervals to tissue dependent dielectric 

intervals. 

1.2 MRI Based Researches in Breast Cancer 

MRI analysis is based on the creation of body images displayed as thin horizontal 

slices of the breast tissues that can be studied at several angles by using magnetic and 

radio waves where ionizing radiation is avoided. During the MRI analysis of each 

breast, a great number of images are acquired to be assessed by a radiologist. Similar 
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to mammography, which uses X-ray machines equipped for specifically imaging  

breasts, MRI uses special equipment with higher qualities than the images obtained 

from the equipments used for MRI scanning of head or chest to create breast images. 

In the researches related to breast cancer detection, several techniques based on MRI 

have been developed. A novel and auspicious technique introduced is dynamic 

contrast enhanced magnetic resonance imaging (DCE-MRI). It is expected to be 

particularly suitable for screening dense breasts. DCE-MRI processes involve a 

contrast agent, generally Gadolinium DTPA, which is useful in the improvement of 

tissue discrimination. The reason for using this paramagnetic compound is its 

existence at intravascular and extracellular fluid space and its ability to increase the 

luminance of these Gadolinium-enhanced tissues remarkably, because of which 

vascular tissues such as lesions can be detected with ease. Within a typical DCE-

MRI process, the breast is imaged both before and after the injection of a contrast 

agent to observe the effects of the contrast agent on the tissues [9].  

In a recent study, a computer-aided diagnosis (CAD) system, which has enhanced the 

sensitivity, precision and rapidity of MRI studies, has been developed for detecting 

tumors. Besides the images taken before the injection, at every minute after the 

injection MR images are taken for six minutes with the T1 mode, the FLASH 3D 

traverse setting of the MRI machine. The principal task carried out by the contrast 

agent during this time duration is changing the relaxation times of tissues as a result 

of which the radiologists can determine the existence and site of a tumor or a lesion. 

Sets of images acquired are analyzed considering the three probable cases: 

malignant, benign and suspicious.  Within this analysis, a lesion is identified as:  

i. benign if the increase in the signal intensity is monotonic over the period after 

the injection  

ii. suspicious, if the peak signal intensity is observed before three minutes and 

preserved for the rest of test 

iii. malignant if there’s an immediate decrease in the signal intensity right after 

the peak is reached [5]. 
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Another research related to MRI in breast cancer detection introduced a temporal 

feature analysis. In accordance with the assertions mentioned previously, malignant 

lesions are distinguished with their rapid contrast enhancement followed by fast 

washout while benign lesions are identified by their monotonic contrast 

enhancement. Thus, it has been claimed that the automatic detection of the potential 

lesions on MRIs can be determined by the examination of the kinetic curves.  In this 

method, firstly, suspicious areas are detected depending on the contrast enhancement 

properties of the tissues. Then an angiogenesis map is formed after analyzing the 

kinetic curves. After that, pixels are displayed in different colors in accordance with 

the categories they belong [10].  

Besides these MRI based techniques used in the detection of the breast cancer, MRI 

data also serves as an efficient tool in the development of realistic numerical breast 

models by allowing the exhibition of the heterogeneous and dispersive nature of the 

breast tissues. The experiments made to determine the dielectric properties of the 

breast tissues have helped scientists to conceive the varying nature of dielectric 

values across the breast. Nevertheless, the complexity of the dispersion of the tissues 

throughout the breast still poses a difficult problem.  

1.3 Dielectrical Properties of Breast Tissues  

In the experiments made by Chaudhary et al, the dielectric properties of malignant 

and normal surgically removed tissues were measured at frequencies between 3 MHz 

and 3 GHz and the ratio of the relative permittivity and the conductivity of malignant 

tissues to normal tissues were observed to be 5:1 and 4.7:1 respectively[11]. 

In another research carried out by Joines et al, the dielectric properties of tissues 

excised from breasts and some other organs are measured over a frequency range 

extending from 50 to 900 MHz and the results were supportive of those asserted by 

[11]. The greatest dielectric contrast was observed between the normal and malignant 

tissues of the mammary gland, where the average ratio of the relative permittivity 

and the conductivity of malignant tissues to normal tissues were 6.4:1 and 3.8:1 

respectively [12].   
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According to the measurements of the dielectric constants of fatty tissues and tumors 

between 1 and 10 GHz made by our research group in Istanbul Technical University, 

the ratio of the relative permittivity of malignant tissues to fatty tissues seemed to 

vary between 7:1 and 10:1. Some of the experiment results are given in the 

Appendix. 

In addition to these, Surowiec at al measured the relative permittivity of diffusing 

carcinoma and the surrounding tissue by an automatic network analyzer and an end-

of-line capacitor sensor at frequencies between 20 kHz and 100 MHz and matched 

the results to Cole-Cole dielectric relaxation models. It was noticed that the center of 

the tumor and the diffusing margins had significantly higher permittivity compared 

to the peripheral tissues of the tumor. The high permittivity associated with the 

diffusing margins of the tumor was attributed to the proliferation and it was predicted 

that it would cause a large microwave scattering as a result of which small tumors 

could be detected and identified using UWB radar [13]. 

Campbell and Land have examined four types of tissues: fatty, normal, benign and 

malignant via a resonant cavity technique. They’ve put forward that it might be 

impossible to define tumors as benign or malignant on account of their dielectric 

similarities and also pointed out that there’d been a greater variance within the 

normal tissues then had been claimed [14].  

An extensive analysis of the dielectric properties of normal and cancerous tissues has 

aimed to describe the dielectric properties of a great number of newly excised breast 

reduction, biopsy, lumpectomy and mastectomy tissues across a broad frequency 

range of 0.5- 20 GHz by firstly correlating the measured dielectric properties with 

pathological analysis of the tissue samples, then applying a statistical analysis to 

check the data integrity and finally adjusting the data to Cole-Cole representations. 

Within this research, each sample was assigned to one of the three adipose tissue 

groups due to the percentage of adipose it contains. These adipose tissue groups 

were; Group 1(0-30% adipose tissue), Group 2, (31-84% adipose tissue) and Group 3 

(85-100% adipose tissue). Median permittivity and conductivity curves were drawn 

by calculating the matched values for every sample in the group at 50 equispaced 

frequency points, and then the median values at specific frequencies were computed 

for every group. After that, Cole-Cole equations were used to match the median  
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values calculated. When the results were compared to the previously published data 

for normal tissue, the median dielectric curves for Group 3 adipose tissue were 

noticed to be lower and the median dielectric curves for Group 1 adipose tissue were 

noticed to be higher than expected. These differences are attributed to the large 

heterogeneity in normal breast tissues [15], [16].  

In the other studies, the normal tissue samples had been abducted from regions away 

from the area with the tumor. As the tumors usually appear in glandular tissues, these 

normal samples unsurprisingly have a higher adipose content compared to the 

glandular tissue around the tumor. Therefore, the heterogeneity in the dielectric 

properties of breast tissues had been underrated.  

In the consecutive studies defining the dielectric properties of a breast tissue as a 

function of the relevant tissue’s adipose content, the permittivity difference is 

estimated as 8% at 5 GHz. Thus, realistic breast models are anticipated to provide 

more accurate comprehension of the dispersion of the breast tissues due to the 

variances in the electrical properties [2].  

1.4 Breast Models Derived from MRI   

Commonly used models in the microwave investigation techniques are the finite-

difference time-domain (FDTD) computational electromagnetic breast models, 

which serve as beneficial tools in displaying the structural complexities, tissue 

heterogeneity, and varying dielectric properties of the breast. FDTD models of other 

body parts, specifically the ones composed of tissue types delineated well and 

featuring spatially constant dielectric properties, are derived from MRIs handily and 

are efficiently used. Following this approach, in several recent researches, numerical 

breast phantoms have been derived from MRIs [2].  

Lie et al constructed a FDTD model of the breast using MRI images of the breast. 

Within the construction process, a high resolution breast MRI was taken while the 

patient was in the prone position and a low resolution MRI was taken while the 

patient was in the supine position. The low resolution MRI was used in horizontally 

expanding and vertically compressing the high resolution MRI so that both scans’  
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shapes matched and the reformed MRI scan displayed the breast’s fibroglandular and 

adipose tissues coherently. 

In the MRI images used by Lie at al, the dark regions depicted the adipose tissue and 

the ligh regions depicted the fibroglandular tissue. In the constructed models, these 

tissue distributions were maintained by the assignment of dielectric values in 

accordance with the corresponding MRI pixels’ intensities [17]. During the 

assignment of the dielectric properties, the variance is taken as the upper bound of 

breast tissue variability, i.e. 10% as assumed in [12], [6] and [11].  

The modeling methodology Lie at al reinforced has been in use for several years [2].  

 

Figure 1.1: MRI based breast model where the tissues are apparent [2]. 

A recent research in the construction of the realistic breast models with electrical 

properties was carried out at the University of Wisconsin, Madison. Within this 

research, a collection of anatomically and dielectrically realistic 3-D numerical breast 

phantoms of different geometry and radiographic density are derived from 3-D MRIs 

of normal breast tissues whereas the frequency-dependent and tissue-dependent 

dielectric properties are deduced from the Wisconsin–Calgary study [15],[16]. Breast 

MRI voxel intensities were linearly mapped to dielectric properties of normal breast 

tissue accurately using a two-component Gaussian mixture model (GMM). As in Li 

et al.'s 2D FDTD model, the highly correlated nature of fibroglandular tissue 

distribution in the breast was conserved and the model was claimed to be more 

successful in representing the structural heterogeneity of normal breast tissue [2]. 

Nevertheless, accurate results are unlikely to be achieved in these derivations 

because of the complex distribution of glandular, adipose, and fibro-connective 

breast tissues and the remarkable heterogeneity of dielectric characteristics of 
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normal breast tissues, but the presented numerical breast phantoms can serve as 

representative breast models to be used in developing new microwave techniques for 

breast cancer detection [2]. 

 

Figure 1.2: A cross section of a MRI-based breast model showing the tissue 

distribution [2]. 
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2. IMAGE PROCESSING METHODS 

2.1 Histograms 

The histogram of a digital image illustrates the amount of pixels associated with each 

intensity level defined in the image. It is represented by the function ( )k kh r n  

where 
kr  denotes the relevant intensity level and 

kn  denotes the number of pixels 

associated with 
kr  The domain of the intensity levels is [0, ]G  where G  is 255, 

65535 and 1.0  for images of class uint8, uint16 and double respectively. Assuming 

that L  intensity levels are defined in each of these intervals, 
1r  would correspond to 

the intensity level 0  and 
Lr would correspond to the intensity level G . Additionally 

1G L   holds for classses of uint8 and uint16. 

Normalized histograms are obtained in a similar fashion, The normalized histogram 

given by 
( )

( ) k k
k

h r n
p r

n n
   is equivalent to the probability estimate of the intensity 

level 
kr  

Histograms are generated by the imhist function of Matlab as: 

( , )h imhist f b  where f  denotes the input image and b  denotes the number of 

bins, in other words, the subintervals of the intensity axis and normalized histograms 

can be attained as follows: 

 
( , )

( )

imhist f b
p

numel f
  where ( )numel f  returns the number of elements i.e. pixels in f . 

Furthermore, images can be translated into images with higher contrast and 

augmented dynamic range by means of histograms. This process is known as 

histogram equalization. The transformation function for a given image with the 
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histogram ( )r jp r  is: 
1

( ) ( )
k

j

k k r j

j

n
s T r p r

n

    which converts the intensity value 

jr  of the input image to the intensity value 
ks  of the output image, and corresponds 

to the cumulative density function of the intensity values.  

As a result, the image is enhanced by expanding the intensity levels of the given 

image over a broader range. However, the result is not always successful.  

At times, a processed image with a specified histogram can be practical to generate. 

The method used for this process is called histogram matching. In order to generate 

an image with a specified density, ( )zp z  a new variable, z  denoting the intensity 

levels of the image under construction is introduced. 

0
( ) ( )

z

zH z p w dw s                                                                                      (2.1) 

 1 1( ) ( )z H z H T r  
 

                                                                                         (2.1a)                                                

where ( )T r  is the transformation function defined previously. 

As 1H  exists for all valid ( )zp z s and its components are non-zero, z  intensity levels 

can be found handily [18]. 

histeq  function of Matlab can be used for both histogram equalization and histogram 

matching processes. 

2.2 Image Filtering 

2.2.1 Homomorphic filter 

During the production of the images, considerable shading effect occurs across the 

field of view due to the associations between the objects, the illumination and the 

imaging tools. For instance, the image’s brightness may be decreasing from the 

center of the image to the edges of the field of view or from one side of the image to 

its other side. Eliminating the effect of this shading, which might be caused by the 

nonuniformity of the illumination or imaging tools, is often necessary for 

consecutive image processing schemes.  
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The following model can illustrate the shading effect: 

 ( , ) ( , ) ( , )illb x y I x y a x y   where ( , )a x y  stands for the object, ( , )b x y  stands for the 

image and 
illI  stands for  illumination. 

For low concentrations, 

( , ) ( , ) ( , ) ( , )a x y gain x y b x y offset x y                                                                   (2.2)                                               

where ( , )offset x y  and ( , )gain x y  are the contributions of the imaging tool. 

The resultant shading ( , ) ( , ) ( , ) ( , )illgain x y I x y a x y offset x y                   (2.3) 

( , )illI x y is ordinarily presumed to be changing moderately relative to ( , )a x y  

One of the two conditions where the intention is the estimation of shading terms 

( , ) ( , )illgain x y I x y and ( , )offset x y  needed to determine ( , )a x y  from ( , )c x y  is a 

posteriori estimation. Under these circumstances, the only data available is the 

recorded image and the aim is to remove the shading estimate from ( , )c x y . Low-

pass filtering, homomorphic filtering and morphological filtering are the methods 

used for this purpose.  

In homomorphic filtering, considering that ( , ) 0offset x y   and ( , ) ( , )illgain x y I x y  

varies slowly compared to ( , )a x y , the logarithm of ( , )c x y  is taken to produce low 

frequency and high frequency terms. Then, the shading is restrained by the high pass 

filter applied to the logarithm of ( , )c x y . Finally, the image is retrieved by taking the 

exponent of the high-pass filtered results.  Consequently, the brightness over an 

image is normalized, multiplicative noise is removed and the contrast is increased 

[19]. Here is the description of this filtering process developed by Oppenheim and 

Stockham [19]: 

Step-1: ( , ) ( , ) ( , )illc x y gain x y I x y                                                                (2.4a) 

Step-2: ln[ ( , )] ln[ ( , ) ( , )] ln ( , )]illc x y gain x y I x y a x y                                    (2.4b) 

Here the first term varies slowly whereas the second term varies fast. 
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Step-3: {ln[ ( , )]} ln[ ( , )]HighPass c x y a x y                                   (2.4c) 

Step-4: * {ln[ ( , )]}( , ) HighPass c x ya x y e                                  (2.4d) 

2.2.2 Mean filter 

Mean filters smooth regional variations in an image and reduces the noise on account 

of blurring. There are five types of mean filters: arithmetic, geometric, harmonic and 

contraharmonic.  

Arithmetic mean filter helps calculating the average values of the original image 

( , )g x y  in the region defined by 
xyS which denotes the coordinate array of a 

rectangular subimage window of size m n . In the aftermath, the values of the 

retrieved image at  ( , )x y  corresponds to the arithmetic means of the pixel values of 

the areas determined by   . 

The mathematical representation for the filtered image is:  

( , )

1
( , ) ( , )

xys t S

f x y g s t
mn 

   
                                                                (2.5) 

 

Geometric mean filter computes the products of the pixels in the subimage windows, 

raised to the power 
1

mn
as the retrieved values for all the pixels. Geometric mean 

filters are not more successful than arithmetic filters in smoothing, however they 

preserve more details.  

The mathematical representation for the filtered image is: 

1

( , )

( , ) ( , )
xy

mn

s t S

f x y g s t


 
  
  
  

                                                                (2.6) 

 

Similarly, the mathematical expressions for Harmonic and Contraharmonic mean 

filters, which are commonly used in salt-pepper noise elimination, are as shown 

respectively as follows: 



15 

 

( , )

( , )
1

( , )
xys t S

mn
f x y

g s t




 

                                                                (2.7) 

 

1

( , )

( , )

( , )

( , )
( , )

xy

xy

Q

s t S

Q

s t S

g s t

f x y
g s t












 

                                                                (2.8) 

 

 

In the above equations, Q  denotes the order of filter [20]. 

2.2.3 Laplace filter 

Regional equalization of image contrast mentioned in section 2.1 yields increment in 

regional contrast at boundaries as a result of which the edges become more vivid and 

the image sharpens. However, there’re other methods of edge enhancement which 

are more insensitive to overall brightness levels, noise, and the type or scale of detail 

present than the equalization. 

The conventional     Laplacian filter is: 

1 1 1

1 8 1

1 1 1

   
 
  
 
      

This filter nullifies the gray level in a uniformly bright region or a region with a 

uniform brightness gradient of an image by deducting the brightness values of the 

pixels in the neighborhood from eight times the pixel in the center. In the emergence 

of a discontinuity in the neighborhood such as a point or a line, the Laplacian gives 

either a positive or a negative value due to the central point’s position relative to 

edge. While displaying the result, commonly an average gray value, which is 128 for 

an image where the gray values are depicted in the range [ 0, 255], in order to make 

the zero points appear middle gray, and the brighter and darker values generated by 

the Laplacian visible is accepted. Another approach is drawing the absolute value of 

the result; however, this creates double lines causing clutter in both the human vision 

and the consecutive processes along edges. 
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Additionally, as the name of the filter hints, the Laplacian filter is based on 

estimating the  second derivative of brightness B , which does not vary due to 

rotation, and therefore not susceptible to the direction of discontinuity. Consequently, 

the points, lines, and edges are exposed, and the uniform and smoothly varying 

regions are restrained. By varying the weights of the kernel, the image can be 

sharpened. Here is a kernel that can be defined as a sharpening operator increasing 

the image contrast at edges. 

1 1 1

1 9 1

1 1 1

   
 
  
 
      

A clear image B can be retrieved by applying the Laplacian filter to the blurred 

image. Laplacian filter can be interpreted as a high pass filter, which authorizes the 

high frequencies a low pass filter would discharge or suppress in order to prevent the 

variations in brightness of the neighboring pixels to penetrate the filter and dismisses 

the low frequencies implying the gradual overall variation in brightness. 

There are various kernels that can be used with the Laplacian operator. For instance, 

an elementary kernel is: 

0 1 0

1 4 1

0 1 0

 
 
   
  

 

The drawback of using simple kernels is the noise caused by the casual differences 

between adjacent pixels; even the homogeneous parts of an image is highlighted with 

this approach [21]. 

2.2.4 Edge detection filters 

As well as smoothing, the capability of taking spatial derivatives of an image is a 

basic operation of image processing. However, digitized images are discrete 

functions        of the integer spatial coordinates instead of being continuous 

functions of the spatial variables; therefore, real spatial derivatives can only be 

approximated in the case of image processing. 

In addition to this, derivation causes the high frequency noise to be highlighted in the  
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final image. This issue is handled with the combination of the derivative operation 

with an operation covering up the high frequency noise, thus the smoothing operation 

is combined with the derivative operation required. 

As the image values vary in multiple directions, the directional derivatives needs  

being considered. Thus, a random angle derivative matrix (filter) is identified as 

follows: 

[ ] cos [ ] sin [ ]x yh h h                                                                  (2.9) 

where 
xh denotes a horizontal derivative matrix and 

yh  denotes a vertical derivative 

matrix. 

Vector derivatives can also be written by using the gradient operator as: 

( ) ( )x y x x y y

a a
a i i h a i h a i

x y

    
      

   

                                                       

(2.10) 

 

where 
xi
 and 

yi
 are horizontal and vertical unit vectors respectively. 

Furthermore, gradient direction and gradient magnitude are as follows: 

( )
( ) arctan

( )

y

x

h a
a

h a


 
   

   

                                                                      

                                                            (2.11) 

2 2( ) ( )x ya h a h a    
 

                                                            (2.12)                                      

As it can be seen from above, the results of these computations depends on the 
yh  

and xh
 
chosen. Gradient filters differ in the selection of these matrices. xh  and 

yh  

matrices used by basic derivative filters are: 

   1, 1
t

x yh h                                                                   (2.13) 
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   1,0, 1
t

x yh h      
                                                             (2.14) 

Within Sobel gradient filtering, the filters are dissociable, each deriving in one 

direction by using (2.13) and smoothes in the orthogonal direction. The derivative 

filters used by Sobel gradient filter are: 

 

1 0 1 1 1
1 1

2 0 2 2 0
4 4

1 0 1 1 1

T

xh

     
     

        
           

 

                                                             (2.15) 

 

 

1 2 1 1 1
1 1

0 0 0 0 2
4 4

1 2 1 1 1

T

yh

     
                
             

 

                                                             (2.16) 

 

 

This filter is one of the most commonly used techniques, even though it requires a 

modest amount of computation to perform correctly.  

Similar to Sobel gradient filters, Prewitt gradient filters are dissociable and each 

derives in one direction by utilizing (2.14). However, they use a uniform filter while 

smoothing in the orthogonal direction [18]. 

The derivative filters used by Prewitt gradient filter are: 

 

1 0 1 1 1
1 1

1 0 1 1 0
3 3

1 0 1 1 1

T

xh

     
     

        
           

 

                                                             (2.17) 

 

 

1 1 1 1 1
1 1

0 0 0 1 0
3 3

1 1 1 1 1

T

yh

     
                
             

 

                                                             (2.18) 
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3. MATHEMATICAL METHODS  

3.1 Gaussian Distribution 

Gaussian distribution function can be used when the number of events or features are 

extremely high. It is a continuous function approximating the accurate binomial 

distribution of events or features. 

The probability density functions of the Gaussian distribution with mean μ and 

standard deviation σ is: 

 
2

2
( )

2
1

( ; , )
2

x

p x e



 
 

 



 

                                                                (3.1) 

 

The cumulative distribution function for the Gaussian distribution with mean μ and 

standard deviation σ is: 

( ; , ) ( ; , )

z

z p x dx    


 
 

                                                                (3.2) 

 

The probability density function for the standard Gaussian distribution where 0   

and 1   is:  

2

21
( )

2

x

p x e


 
  
 

 

                                                                (3.3) 

 

The cumulative distribution function for the standard Gaussian distribution is: 

( ) ( )

z

z p x dx


 
 

                                                                (3.4) 

 

In general, large numbers of independent random variables (approximately) has a 

normal distribution. 
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3.2 Gaussian Mixture Models 

A Gaussian Mixture Model (GMM) is a probability density function represented by 

the weighted sum of   component Gaussian densities as follows: 

1

( | ) ( | , )
N

i i i

i

p x w g x 


   
                                                                (3.5) 

 

where x is a K dimensional data vector(standing for measurements or features),   , 

1,2,...i N , are the mixture weights and ( | , )i ig x    for 1,2,...i N  are the 

Gaussian densities of mixture components. For the i
th

 component, the Gaussian 

density is of the form: 

' 11
{ ( ) ( )}

2
/2 1/2

1
( | , )

(2 ) | |

i i ix x

i i D

i

g x e
 




   

 


 
                                                         (3.6) 

 

where i  is the mean vector and i  is the covariance matrix. The mixture weights 

satisfy: 

 

1

1
N

i

i

w



 

                                                                (3.7) 

The parameters of the Gaussian mixture model are denoted by: { , , }i i iw  
 
for 

1,2,...i N  

Several different configurations are thinkable for this model. For instance, the 

covariance matrices i  can be either full rank or restrictedly diagonal, parameters 

can be mutual, or tied, among the Gaussian components. The amount of data and the 

usage of the GMM are the decisive factors in the determination of a certain model. 

Even if the full covariance matrices are not used, the correlations between 

statistically dependent features can be illustrated as the linear combination of 

Gaussians with diagonal covariance basis, as using a set of   Gaussians with full 

covariance matrix is equivalent to using a larger set of Gaussians with diagonal 

covariance. 
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Besides the smooth overall distribution fit provided, the multi-modality of the 

density is distinctly given by the parameters of GMM. An example for this multi- 

modality attribution is shown in Figure 3.1 

The most well-known and substantial method used in the estimation of GMM 

parameters is Maximum Likelihood (ML) estimation.  

With training vectors 1 2{ , ,..., }TX x x x and a GMM configuration given, estimating 

the parameters of the GMM is achieved by maximizing the likelihood of the given 

GMM training data. Considering that the vectors are linearly independent, the GMM 

likelihood can be shown as: 

 

1

( | ) ( , )
T

t

t

p X p x 



 

                                                                (3.8) 

As the likelihood is not a linear function of the GMM parameters, direct 

maximization is impossible. Nevertheless, parameters can be estimated iteratively by 

utilizing a special case of the EM algorithm. At every iteration, the likelihood is 

ensured to increase monotonically and a new model is assigned to be the initial 

model until a convergence to a local maximum of the likelihood function is achieved. 

Here are the modeling parameters for each GMM component at each iterative step 

assuring a monotonic augmentation in the model’s likelihood [23]: 

1

1
Pr( | , )

T

i t

t

w i x
T




   
                                                               (3.9) 

 

1

1

Pr( | , )

Pr( | , )

T

t t

t
i T

t

t

i x x

i x

















 

                                                             (3.10) 
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1

Pr( | , )

Pr( | , )

T
t

t t

t
i iT

t

t

i x x

i x


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


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
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
 

                                                             (3.11) 
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Figure 3.1: (a) Histogram (b)Unimodal Gaussian (c) Gaussian Mixture Density

 3.3 Piecewise Cubic Spline Interpolation 

Splines can be interpreted as thin flexible strips attached with pins, which stand for 

the knots of the spline in the mathematical definition, from mechanical point of view. 

As, in the mechanical model, the slope and the bending moment is continuous at the 

pins, the first and the second derivatives are continuous at the knots, namely, the data 

points. Similarly, as the bending moment vanishes at the pins at edges, the second 

derivatives also vanish at the two end data points. Because of these similarities 

between the spline curves and their corresponding mechanical models, these curves 

are called natural cubic splines [24]. 

While fitting a straight line to each interval between two successive points in a given 

data set, ( , )i ix f  and 1 1( , )i ix f  , only the function values at the data points can be 

preserved on each side of the interval.  Additionally, higher order polynomials are 

not very effective in interpolation, too. The major drawback of polynomial 

interpolation is in the subintervals, especially between the first two and last two data 

points; the function varies extremely, overshooting the changes in the original data. 

Therefore, full-degree polynomial interpolation does not have a widespread use in 

fitting curves and data; instead, it is mainly used in the enhancement of other 

numerical techniques. Furthermore, polynomials of high degree are prone to 

oscillation dreadfully between the data points whereas smoother results are likely to 
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be reached by using a cubic interpolant satisfying the continuity constraints in 

derivatives. 

Each partition of a cubic spline curve is a cubic polynomial. Nevertheless, splines are 

less likely to oscillate between data points than the polynomials. Therefore, cubic 

splines are the most commonly used curves for this purpose [24], [25]. 

For a cubic spline spanning n  knots, each of the 1n  cubics is in the following 

form: 

     
2 3

( )i i i i i i i if x a x x b x x c x x d      
 

                                                     (3.12) 

Thus, 4 4n  unknowns are needed to be found.  

Using the derivative constraints and the nullity of curvature of natural splines at the 

two end points, the system becomes determined with 4( 1)n  equations.  

For 1,2,... 2i n   

( )i i if x y                                                                (3.13) 

1 1( )i i if x y      for 1,2,... 1i n                                                                 (3.14) 

' '

1 1 1( ) ( )i i i if x f x                                                                  (3.15) 

'' ''

1 1 1( ) ( )i i i if x f x                                                                  (3.16) 

'' ''

1 1 1( ) ( ) 0n nf x f x 
                                                               (3.17) 

On either side of a knot, although the second derivatives have different formulas, 

because of the continuity, they have the same value at the knots, i.e. 

'' ''

1, , 1( ) ( )i i i i i i if x f x k    where 1 0nk k    and ik is unknown for 1,2,... 1i n   

In order to write the second derivative explicitly, Lagrange two-point interpolation 

can be used as follows: 
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''

, 1 1 1( ) ( ) ( )i i i i i if x k l x k l x    where 1

1

( ) i
i

i i

x x
l x

x x









and 

1

1

( ) i
i

i i

x x
l x

x x








 

(3.18) 

'' 1 1
, 1

1

( ) ( )
( ) i i i i

i i

i i

k x x k x x
f x

x x

 




  



                  

(3.19)  

By integrating with respect to x, 

3 3
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, 1 1
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Considering the condition: 
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In order to find the second derivative values at the interior knots, the first derivative 

constraint is used: 
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(3.22b) 

Here there are 2n  equations for n  knowns. “Not-a-knot “strategy is 

commonlyused around the ends of the interval to make the system determined. This 

strategy yields the reduction of the number of unknowns by using single cubics on 

the first two and last two subintervals [26].  

Splines can be fit to a given data set by using the spline function written by Carl De 

Boor in MATLAB. 
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4. MODELLING 

4.1 Methodology 

In the first step of this study, the MRI breast images provided from Euromed 

Radiology Centre and Maltepe University were processed morphologically in order to 

reduce imaging artifacts. Then, in the second step, the Gaussian distribution of the 

two main breast tissues, namely, fibroglandular and fatty tissues, were constructed to 

ascertain the distinctive intensity values for these tissues. After that, the piecewise 

mapping parameters: the minimum, maximum, intermediate and mean intensity 

values of the two main tissue types were computed. Additionally, the intensity 

intervals determined by the minimum, maximum, intermediate and mean intensity 

values were matched with seven distinct tissue types. Finally, the intensity values 

were mapped to the dielectric constants and conductivity values via piecewise linear 

mapping and cubic spline interpolation. 

4.2 MRI Data Manipulation 

At this stage, edge detection methods and smoothing operations are applied to the 

magnetic resonance images provided from the radiology center and the hospital stated 

previously.  

Firstly, the details of images are observed by using the Sobel or Prewitt gradient 

filters and then via homomorphic filtering the low frequency spatial variations are 

removed in order to suppress the slowly varying intensity gradients, which occur 

especially in the tissues besides the coils and are caused by the nonuniform magnetic 

fields. Figure 4.4, Figure 4.5 and Figure 4.6 illustrates the filtered versions of the MRI 

images, “z”, ”e” and ”m” given in Figure 4.1., Figure 4.2 and Figure 4.3   

Then, the image is masked using a binary mask in order to acquire more accuracy 

after the application of several morphological operations. The images shown in Figure 

4.7, Figure 4.8 and Figure 4.9 are the resulting images of these imaging processes. 
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Apart from these, Figure 4.10-4.12 and Figure 4.13-4.15 respectively show the results 

of the Sobel and Prewitt edge detection filters applied to the MRI images and Figures 

from 4.16 to 4.18 show the results of the Laplace filter application. 

 

Figure 4.1: MRI image 

“z”  

 

Figure 4.2: MRI image 

“e” 

 

Figure 4.3:MRI image 

“m” 

 

Figure 4.4: Fıltered 

Image “z” 

 

Figure 4.5: Filtered  

Image “e” 

 

Figure 4.6: Filtered 

Image “m” 
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Figure 4.13: Prewitt 

Edge Detection Filter 

applied to “z” 

 

Figure 4.14:Prewitt 

Edge Detection Filter 

applied to” e” 

 

Figure 4.15:Prewitt 

Edge Detection Filter 

applied to “m” 

 

Figure 4.7: Filtered & 

Masked Image “z” 

 

Figure 4.8: Filtered & 

Masked Image“e” 

 

Figure 4.9: Filtered & 

Masked Image “m” 

 

Figure 4.10:Sobel 

Edge Detection Filter 

applied to “z” 

 

Figure 4.11:Sobel Edge 

Detection Filter applied to 

“e” 

 

Figure 4.12:Sobel 

Edge Detection Filter 

applied to “m” 
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4.3 The Construction of Breast models 

At this stage, the minimum, maximum, intermediate and mean intensity values of the 

two main tissues are computed by using the histograms of the images and the intensity 

intervals are mapped to the dielectric intervals via both piecewise linear and  cubic 

spline interpolation. 

Firstly, the tissues are dissociated depending on the expected diversity between their 

intensity levels by utilizing the threshold values determined in accordance with their 

Gaussian distributions.  

Then, the minimum, maximum, intermediate and mean intensity values of the two 

distinct tissues, namely, fibroglandular tissue and fatty tissue, are derived from the 

Gaussian distribution model. 

After that, the intensity intervals are matched with the appropriate tissue classes and 

the intensity values of each interval are mapped to the dielectric constant and 

conductivity values of the relevant tissue stated by [8] firstly by linear interpolation 

and then by cubic spline interpolation.  

Furthermore, the dielectric intervals are also determined by using 10% variances 

within the same tissue groups and 15% variance between the distinct tissue groups 

(fibroglandular and fatty tissues) to illustrate an alternative approach for modeling. 

Within this approach, the dielectric and conductivity values stated by Converse et al 

are assumed valid [28] instead of the dielectric intervals determined by [8]. 

 

Figure 4.16: Laplace 

Filter applied to “z” 

 

Figure 4.17: Laplace 

Filter applied to “e” 

 

Figure 4.18: Laplace Filter 

applied to “m” 
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4.3.1 Piecewise linear interpolation 

At this stage, the intensity values in the intervals determined depending on the 

Gaussian distributions of the fibroglandular and fatty tissues similarly to done in [8], 

are linearly mapped to the corresponding tissues’ dielectric values. 

Here are the eight mapping parameters taken as the edges of the seven intensity 

intervals, which correspond to the seven designated breast tissues: fibroglandular-1, 

fibroglandular-2, fibroglandular-3, transitional, fatty-1, fatty-2 and fatty-3, for MRI 

images where the fatty regions have low and glandular regions have high intensity 

values: 

inf( | )fm x x B                                                                    (4.1) 

g g gm                                                                      (4.2) 

g g gm                                                                      (4.3) 

f f fM                                                                      (4.4) 

f f fm                                                                      (4.5) 

sup( | )gM x x B                                                                    (4.6) 

where B denotes the interior region of the breast. 

Expected values and variances are firstly computed by means of the basic methods 

separately: 

( )
g

g gx B
x p x


                                                                    (4.7) 

( )
f

f fx B
x p x


                                                                    (4.8) 

2 2( ) ( )
g

g g gx B
x p x 


                                                                     (4.9) 

2 2( ) ( )
f

f f fx B
x p x 


                                                                   (4.10) 
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where ( )gp x  and ( )fp x denote the probabilities of glandular and fatty tissues 

respectively.  

Secondly, these parameters are obtained from the two-component GMM, which 

utilizes the EM algorithm to estimate the mixture parameters, by using the 

gmdistribution  function of Matlab. The rest of the parameters are derived from the 

Gaussian distribution as before.  

The histograms and Gaussian distributions of the glandular and fatty tissues of each 

breast sample are displayed in Figures 4.19, Figure 4.20 and Figure 4.21.  

 

Figure 4.19: Histogram of MRI image “e” is shown by the blue curves and the 

glandular and fatty tissues’ Gaussian curves are denoted by green and red curves 

respectively. 

 



33 

 

 

Figure 4.20: Histogram of  MRI image “z” is shown by the blue curves and 

the glandular and fatty tissues’ Gaussian curves are denoted by green and red 

curves respectively. 

 

Figure 4.21: Histogram of  MRI image” m” is shown by the blue curves and 

the glandular and fatty tissues’ Gaussian curves are denoted by green and red 

curves respectively. 

The resulting models obtained by applying this mapping to the previously shown MRI 

images are illustrated in the figures below. Figures 4.22, Figure 4.23, Figure 4.26, 

Figure 4.27, Figures 4.30 and Figures 4.31 show the resulting models obtained by 
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using the the dielectric intervals in accordance with [8]. Figure 4.24, Figures 4.25, 

Figures 4.28, Figures 4.29, Figures 4.32 and Figures 4.33 show the resulting models 

obtained by using the dielectric intervals computed by applying 10% and 15% 

variances to the values stated by [28]. 

 

Figure 4.22: Dielectric distribution 

for MRI image “z" 

 

Figure 4.23: Conductivity 

distribution for MRI image “z" 

 

Figure 4.24: Dielectric distribution 

for MRI image “z" 

 

Figure 4.25: Conductivity 

distribution for MRI image “z" 

 

Figure 4.26: Dielectric distribution 

for image "e" 

 

Figure 4.27: Conductivity 

distribution for MRI image “e” 
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Figure 4.28: Dielectric distribution 

for MRI image “e" 

 

Figure 4.29: Conductivity 

distribution for MRI image “e" 

 

Figure 4.30: Dielectric distribution 

for MRI image “m" 

 

Figure 4.31: Conductivity 

distribution for MRI image “m" 

 

Figure 4.32: Dielectric distribution 

for MRI image “m" 

 

Figure 4.33: Conductivity 

distribution for MRI image “m" 
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4.3.2 Cubic spline interpolation 

This stage differs from the previous stage in the way the intensity values are mapped 

to the corresponding tissues’ dielectric values. Instead of using a piecewise linear 

function, piecewise cubic splines are occupied to present the relation between the 

MRI intensity values and dielectric constant and conductivity values. 

The mapping parameters are firstly assigned by means of both customary methods 

and secondly by using the GMM as done in the piecewise linear interpolation 

application.  

Moreover, as done in the previous technique two different dielectric intervals are 

used. Figure 4.34, Figure 4.35, Figure 4.38, Figure 4.39, Figure 4.42 and Figure 4.43 

show the results obtained by using the dielectric intervals appropriate to the 

measurements made by [8] and Figure 4.36, Figure 4.37, Figure 4.40, Figure 4.41, 

Figure 4.44 and Figure 4.45 show the models obtained by applying 10% and 15% 

variances to the values stated by [28] conveniently. 

 

Figure 4.34: Dielectric distribution 

for MRI image “z” 

 

Figure 4.35: Conductivity 

distribution for MRI image “z” 
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Figure 4.36: Dielectric distribution 

for MRI image “z” 

 

Figure 4.37: Conductivity distribution 

for MRI image “z” 

 

Figure 4.38: Dielectric distribution 

for MRI image “e” 

 

Figure 4.39: Conductivity distribution 

for MRI image “e” 

 

Figure 4.40: Dielectric distribution 

for MRI image “e” 

 

Figure 4.41: Conductivity distribution 

for MRI image “e” 



38 

 

 

Figure 4.42: Dielectric distribution 

for MRI image “m” 

 

Figure 4.43:  Conductivity 

distribution for MRI image “m” 

 

Figure 4.44: Dielectric distribution 

for MRI image “m” 

 

Figure 4.45: Dielectric distribution for 

MRI image “m” 

4.4 Results and Discussion 

As it can be seen from Figure 4.22 to Figure 4.45, piecewise linear interpolation and 

cubic spline interpolation give similar results. However, piecewise linear interpolation 

seem to be more powerful in exhibiting the dispersive nature of the breast tissues as 

the dielectric values differ more than they do in the cubic spline interpolation. On the 

other hand, cubic spline interpolation may be more useful in determining the location 

of the regions with high dielectric values, which also have higher probability of being 

suspicious or cancerous, as the contrast between the tissues are sharply illustrated.  

Moreover, using the expected values and variances obtained from GMM did not give 

consistent results. It is assured that the estimated parameters of GMM via the EM 

algorithm vary depending on the initial parameters, thus, the consequent models 
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differ.  Therefore, distinct Gaussian distributions for both of the main tissues, which 

are illustrated in Figure 4.19, Figure 4.20 and Figure 4.21, are used in estimating the 

mapping parameters indirectly. Additionally, these graphs help in perceiving whether 

a given breast model is composed mostly of fatty or glandular tissues. For instance, it 

can be presumed that the MRI image denoted by “m” is mostly glandular whereas the 

MRI images denoted by “e” and “z” have more moderate distributions by having a 

look at the Gaussian curves in the histograms and these presumptions are compatible 

with the reports of the clinics.  

Furthermore, two different dielectric intervals are considered. Firstly, the dielectric 

constant and conductivity values at the boundaries of the tissues computed at 6 GHz 

by [8] are used in the definition of the dielectric range and then these boundaries are 

computed by applying the commonly accepted variance values (10%  and 15%) to the 

dielectric constant and conductivity values stated by [28] for 6 GHz. It’s been shown 

that there hasn’t been convenience between the dielectric values obtained by different 

researches.  

According to the report on the MRI image denoted by “e”, there is a solid, localized, 

hypoechogenic lesion in two o’clock radial direction and scattered tubular 

hypoechogenic areas in four o’clock radial direction [26]. In all the models obtained 

for the breast image “e” (See Figure 4.26, Figure 4.27, Figure 4.28, Figure 4.29 and 

Figure 4.38, Figure 4.39, Figure 4.40, Figure 4.41), these areas correspond to the 

regions with high dielectric values, in other words, suspicious regions as well. 

Nevertheless, cubic spline approach provides more accuracy in the boundaries of 

these regions.   

Additionally, in the report for the MRI image “z”, it’s stated that there is a solid lesion 

of size 11x10 mm with spicular contours, localized in 11 o’clock radial direction 

exhibiting malignant properties and there are two similar lesions which may possibly 

be malignant in 1 and 6 o’clock radial directions. Moreover, multiple small cysts of 

varying sizes are present [26]. For the slice processed as “z”, these results are 

presumable, but more slices should be assessed for a further interpretation. On the 

other hand, this also shows the expected difference between the two interpolation 

techniques. As piecewise linear interpolation is tending to disperse the dielectric 

values, the severity of the situation is hard to guess from Figure 4.22 - Figure 4.25 



40 

 

whereas cubic spline approach has given more vivid results in Figure 4.34 - Figure 

4.37.  

Furthermore, the report for MRI image “m” asserts that the breast contains multiple 

small circular lesions with radius smaller or equal to 2 cm and cysts smaller than 2 or 

3 cm [27]. Figure 4.30 – Figure 4.33 and Figure 4.42 - Figure 4.45 are in line with 

these assertions as they all present highly heterogeneous dielectric distributions. 

Furthermore, the circular structure of the lesions and cysts are also visible in the 

images, especially in Figure 4.42 – Figure 4.45.  
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5. CONCLUSION  

The major purpose of this study was to investigate the variations in the electrical 

properties of breast tissues to exhibit the heterogeneity of the breast and the 

dispersive nature of the dielectric properties across the breast tissues. For this reason, 

MRI based breast models which will assist the research in breast cancer detection 

were constructed. Several filters were applied to the MRI images to remove noise 

and obtain more clear images for further analysis. Then by plotting the histograms of 

each image, the distribution of the intensity values and accordingly the distribution of 

the dielectric values were  demonstrated. After that, Gaussian distributions of each of 

the two baseline tissues were used to identify the tissue types due to the intensity 

values in the images.  

Moreover, several methods were tested in mapping the intensity values to dielectric 

values. For instance, the mapping parameters were derived in two ways. Firstly, they 

were computed by means of the Gaussian distribution for both of the basic tissues 

and secondly, they were computed by constructing GMM models. When the results 

were compared, the first way for determining the coefficients seemed to give more 

stable, rapid and realistic results. On the other hand, two different interpolations, 

namely, piecewise linear interpolation and cubic spline interpolation, were used to 

transform the intensity values into dielectric values. It is deduced that piecewise 

linear interpolation is more advantageous than cubic spline interpolation in 

demonstrating the dispersive nature of the breast tissues. However, cubic spline 

interpolation may be superior to piecewise linear interpolation in determining the 

locations of the regions with high dielectric values, which also have higher 

probability of being suspicious or cancerous, as it results in greater contrast between 

the tissues and provides more accuracy in the transition boundaries.   
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    APPENDIX A.1 : Fatty & Cancerous Breast Tissue Measurements, Acquired 

from Electromagnetics Research Group, Istanbul Technical University 
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APPENDIX A.1 

 

 

 

Figure A.1 : Fatty & Cancerous Breast Tissue Dielectric Constant Measurements 




