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THE DERIVATION OF THE DIELECTRICAL BREAST MODELS FROM
MRI IMAGES FOR BREAST CANCER DETECTION

SUMMARY

In this study, the objective is the investigation of the electrical properties’ variations
in the breast tissues in order to exhibit the heterogeneity of the breast tissues and the
dispersive nature of the dielectric properties across the breast. In line with this
purpose, MRI based breast models, which will presumably assist the breast cancer
research carried out at microwave frequencies, were constructed. For precise results,
several imaging processes such as the application of various smoothing and edge
detection filters to the MRI images, which were obtained from Euromed Radiology
Centre and Maltepe University, took place and MRI intensity values were
transformed into uniform grids of dielectric values by using the MRI intensity
histograms. Histograms were utilized in interpreting the tissue distribution of the
relevant breast image and Gaussian curves were plotted to perceive the diversity
between the two baseline breast tissue types, namely fibroglandular and fatty tissues.
Then, the Gaussian mixture model and the basic statistical definitions were used in
order to determine the intensity intervals. Afterwards, the intensity intervals
computed were matched with the tissue—dependent dielectric intervals, subsequently,
the intensity values were mapped to dielectric values, namely, dielectric constants
and conductivity values, via piecewise linear interpolation and cubic spline
interpolation. The dielectric distributions obtained from both of the approaches are
compared and the resulting figures and graphs are illustrated here. Consequently, it is
noticed that the piecewise linear interpolation results in a more scattered dielectric
value distribution whereas cubic spline interpolation depicts a high contrast between
the tissue regions. It is deduced that both of the methods give efficient results and
realistic electrical breast models can be obtained from MRI images via these
methods.
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GOGUS KANSERI TETKIKI iCIN MRI GORUNTULERINDEN
DIELEKTRIK GOGUS MODELLERININ CIKARIMI

OZET

Bu calismada, amag gogiis dokularinin heterojen yapisini ve dielektrik 6zelliklerin
gbgiis icerisindeki degisken dagilimini gozlemleyebilmek i¢in gogiis dokularinin
elektriksel ozelliklerinin incelenmesidir. Bu amag¢ dogrultusunda, mikrodalga
frekanslarda yiiriitiilen gogiis kanseri ¢alismalarinda kullanilmak tizere MRI tabanli
gogiis modelleri olusturulmustur. Hassas sonuglar elde edebilmek i¢in, dncelikle
Euromed Radyoloji Merkezi ve Maltepe Universitesi’nden alian MRI gériintiilerine
piiriizsiizlestirme ve kenar belirleme filtreleri gibi gesitli goriintii isleme teknikleri
uygulanmis ve sonra MRI intensite degerleri MRI intensite histogramlarindan
yararlanilarak iiniform bir dielektrik deger dagilimina doniistiiriilmiistir. Bu
kapsamda, histogramlar ilgili gogiis goriintiisliniin doku dagilimi1 hakkinda bilgi
edinilmesinde ve Gauss egrileri de iki temel doku tiirii olan yag ve fibroglandular
doku arasindaki ayrimin belirlenmesinde kullanilmigtir. Gauss karigim modeli ve
temel istatiksel tanimlar araciligiyla intensite araliklari belirlenmistir. Bundan sonra,
hesaplanan intensite araliklart doku-bagimli dielektrik araliklarla eslestirilmis ve
ardindan pargali lineer interpolasyon ve kiibik spline interpolasyonu kullanilarak
intensite degerleri dielektrik degerlere, diger bir deyisle, dielektrik sabit ve iletkenlik
degerlerine, dontistiiriilmistiir. Burada, her iki interpolasyon sonucunda elde edilen
sonuclar karsilastiriimakta ve elde edilen grafik ve sekiller gosterilmektedir. Sonugta,
parcal1 lineer interpolasyon daha daginik bir dielektrik deger dagilimi verirken kiibik
spline interpolasyonunun dokular arasinda daha yiiksek bir kontrast gosterdigi fark
edilmistir. Boylece, uygulanan her iki yontemin de etkin sonuglar verdigi goriilmiis
ve bu yontemler araciligiyla MRI goriintiilerinden yararlanilarak gergege yakin
elektriksel gogiis modelleri elde edilebilecegi kanisina varilmistir.
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1. INTRODUCTION

Cancer is a kind of disease causing body cells to change and grow uncontrollably.
Tumors are lumps or masses formed by cancer cells and named after the originating
body parts. Breast tumors frequently encountered, known as benign, are not
cancerous. Contrarily to the invasive or infiltrating cancerous tumors, they don’t
grow and spread in an uncontrollable manner. Breast cancer emerges in lobules of
the breast, which consists of milk producing glands, or in the ducts connecting the
lobules to the nipple and spreads by passing through the duct or glandular walls and
penetrating the surrounding breast tissues. The severity of invasive breast cancer is
determined by the stage of the disease; that is, the extent or spread of the cancer at
the time of the first diagnosis. Therefore, early diagnosis is of great import [1].

American Cancer Society has declared that approximately 40,170 women had died
from breast cancer in 2009. Breast cancer is the second most widespread cancer
causing women deaths after the lung cancer. Moreover, according to the statistics of
2009, 1,910 cases of breast cancer, which accounts for 1% of all breast cancers, have
occurred among men [1]. The incidence of the cancer has risen 0.5% annually

resulting in 1.35 to 1.45 million new cases casted by 2010[2].

To date, there is no accurate method for precluding breast cancer, because of which
regular mammograms are very popular. The decline in the risk of death from breast
cancer as a consequence of mammaography has been exhibited by population based
screening assessments and many random trials. However, mammography does have
limitations [1]. Approximately 70% of the tumors detected via mammography are

benign. From 4% to 34% of the breast cancers are not detected by mammography
[3].

Moreover, mammography may lead to further tracking examinations such as biopsies
as a result of false positive test results [1]. Additionally, although mammaography is a

very successful technique at detecting cancers on fatty breasts just as ultrasounds, it

does not provide sufficient sensitivity on dense breasts where fibroglandular tissues

1



can conceal or be assumed as cancer [4]. Therefore, annual MRI screening
supplementary to mammaography is recommended to women at high risk by an expert
panel assembled by the American Society in 2007. Thus, MRI tests suspicious cases
encountered by mammography [1]. MRI can detect breast cancers hidden in
mammography. Nevertheless, it is not replacing traditional mammography as a
screening tool because of the relatively high running cost and high percentage of
unsuccessful predictions as an imaging tool. However, it is used in addition to
mammography in severe cases just as ultrasound, which is utilized in discovering

whether a lesion noticed on a mammogram is a liquid cyst or a tumor [5], [1].

However, none of the previously mentioned techniques can provide much reliable
results in the diagnosis of small cancerous tumors. A reliable detection necessitates
the determination of a significant and steady contrast between malignant and normal
breast tissues. It has been observed that the electrical contrast between the normal
and cancerous breast tissues, especially the contrast between the malignant and
normal tissues is more essential than the density contrast imaged by X-Rays. As a
result, small tumors can be detected sensitively and suspicious areas can be specified
as malignant or benign by benefiting from this contrast [3]. This study, which is
based on the electrical properties of the breast tissues, is a part of the breast cancer

detection research.

The varying nature of the electrical properties of the breast tissues at microwave
frequencies has inspired the engineers to make researches in breast cancer detection
during the last decades. Apart from being sensitive and the specific in detecting small
tumors, microwave breast cancer detection tests are superior to the other commonly
used techniques. For instance, as ionizing radiation and breast compression are

avoided, the process takes place in safer and more comfortable conditions [3].

Currently, several methods operating at various microwave frequencies are
investigated to distinguish small malignant tumors from the normal breast tissues
accurately. The methods used in these researches are: passive, hybrid and active
methods. Passive methods integrate radiometers to determine the differences in the
temperature measurements in the breast in order to detect tumors due to the
remarkable increase in their temperature. Hybrid methods use microwave energy to

heat tumors in a fast and selective manner and ultrasound transducers to discover
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pressure waves generated by the heated tissues’ expansion. Active methods are based
on illuminating the breast with microwaves and measuring the transmitted or
reflected microwave signals afterwards. One of the active microwave methods,
microwave tomography, aims to reconstruct the whole dielectric breast profile by
means of a forward and inverse scattering model. Nevertheless, it is restricted by
resolution, the amount of theoretic information required, and the imaging technique’s
substantial computational requirements. Another active microwave method, Ultra-
Wideband (UWB) Radar imaging, makes use of the reflected UWB signals in the
determination of the location of microwave scatterers within the breast. Instead of
reconstructing the whole dielectric profile of the breast as done in microwave
tomography method, UWB Radar imaging follows the Confocal Microwave Imaging
(CMI) approach in identifying the locations of scattering regions within the breast.
Regions with high energy in the final images are predicted to be indicative of the
cancerous tissues [6].

However, authoritative information about the dielectric properties of normal and
diseased breast tissues at microwave frequencies has been limited. For modeling the
propagation and scattering of microwave signals in the breast, accurate numerical
breast models are needed. Commonly used breast models in modeling the
propagation of electromagnetic signals in biological tissues are FDTD breast models.
These breast models are expected to preserve the geometrical characteristics of the

breast, the heterogeneity and the dispersive properties of the breast tissues [2].

During the enhancement of numerical breast models, MRI data based models have
been noticed to provide more realistic distributions of the breast tissues compared to
the models that assign the dielectric values randomly throughout the breast tissues.
In the MRI data based models; dielectric values of the regions are assigned either
directly or indirectly by using the intensity levels of the images. Accordingly, MRI
data have become an efficient tool in establishing the dispersive nature of the breast
tissues [2]. Several FDTD-based models have used MRI data in the construction of
numerical phantoms. For instance, Time- Reversal (TR) based FDTD methods
practiced in the breast cancer detection make use of realistic breast models derived

from magnetic resonance imaging (MRI) data [7].



In this study, 2D anatomically realistic breast models illustrating the heterogeneity
and the dispersive nature of breast tissues were derived from MRI images and the
varying dielectric properties across the breast tissues were assigned via piecewise
linear and non-linear functions. Tissue-dependent dielectric properties of breast

tissues were obtained from the intensity values of the filtered MRI images.

During this process, tissue-dependent dielectric intervals were assumed to be the
intervals published in [8]. Gaussian distributions were constructed to discern the
distinction between the two main breast tissue types, namely, fibroglandular tissues
and fatty tissues. The MRI images acquired from Euromed Radiology Center and
Maltepe University are used as samples in the application of the derivation methods
presented. The consequent breast models are expected to be utile in developing and
testing the microwave techniques being enhanced for the breast cancer detection.

1.1  Purpose of the Thesis

In this study, it is aimed to investigate the electrical properties’ variations in the
breast tissues to exhibit the heterogeneity of the breast tissues and the dispersive
nature of the dielectric properties across the breast. In line with this purpose, MRI
based breast models, which will assist the research in breast cancer detection carried
out at microwave frequencies, were constructed. For precise results, MRI images
were firstly enhanced through several imaging processes and then MRI intensity
values were transformed into uniform grids of dielectric constants and conductivity
values by means of the MRI intensity histograms. Gaussian curves were drawn to
perceive the diversity between the two main breast tissues. In the end, the purpose is
fulfilled by using the mappings from intensity intervals to tissue dependent dielectric

intervals.

1.2 MRI Based Researches in Breast Cancer

MRI analysis is based on the creation of body images displayed as thin horizontal
slices of the breast tissues that can be studied at several angles by using magnetic and
radio waves where ionizing radiation is avoided. During the MRI analysis of each

breast, a great number of images are acquired to be assessed by a radiologist. Similar



to mammaography, which uses X-ray machines equipped for specifically imaging
breasts, MRI uses special equipment with higher qualities than the images obtained

from the equipments used for MRI scanning of head or chest to create breast images.

In the researches related to breast cancer detection, several techniques based on MRI
have been developed. A novel and auspicious technique introduced is dynamic
contrast enhanced magnetic resonance imaging (DCE-MRI). It is expected to be
particularly suitable for screening dense breasts. DCE-MRI processes involve a
contrast agent, generally Gadolinium DTPA, which is useful in the improvement of
tissue discrimination. The reason for using this paramagnetic compound is its
existence at intravascular and extracellular fluid space and its ability to increase the
luminance of these Gadolinium-enhanced tissues remarkably, because of which
vascular tissues such as lesions can be detected with ease. Within a typical DCE-
MRI process, the breast is imaged both before and after the injection of a contrast

agent to observe the effects of the contrast agent on the tissues [9].

In a recent study, a computer-aided diagnosis (CAD) system, which has enhanced the
sensitivity, precision and rapidity of MRI studies, has been developed for detecting
tumors. Besides the images taken before the injection, at every minute after the
injection MR images are taken for six minutes with the T1 mode, the FLASH 3D
traverse setting of the MRI machine. The principal task carried out by the contrast
agent during this time duration is changing the relaxation times of tissues as a result
of which the radiologists can determine the existence and site of a tumor or a lesion.
Sets of images acquired are analyzed considering the three probable cases:

malignant, benign and suspicious. Within this analysis, a lesion is identified as:

I.  Dbenign if the increase in the signal intensity is monotonic over the period after

the injection

ii.  suspicious, if the peak signal intensity is observed before three minutes and

preserved for the rest of test

iii.  malignant if there’s an immediate decrease in the signal intensity right after

the peak is reached [5].



Another research related to MRI in breast cancer detection introduced a temporal
feature analysis. In accordance with the assertions mentioned previously, malignant
lesions are distinguished with their rapid contrast enhancement followed by fast
washout while benign lesions are identified by their monotonic contrast
enhancement. Thus, it has been claimed that the automatic detection of the potential
lesions on MRIs can be determined by the examination of the kinetic curves. In this
method, firstly, suspicious areas are detected depending on the contrast enhancement
properties of the tissues. Then an angiogenesis map is formed after analyzing the
Kinetic curves. After that, pixels are displayed in different colors in accordance with

the categories they belong [10].

Besides these MRI based techniques used in the detection of the breast cancer, MRI
data also serves as an efficient tool in the development of realistic numerical breast
models by allowing the exhibition of the heterogeneous and dispersive nature of the
breast tissues. The experiments made to determine the dielectric properties of the
breast tissues have helped scientists to conceive the varying nature of dielectric
values across the breast. Nevertheless, the complexity of the dispersion of the tissues

throughout the breast still poses a difficult problem.

1.3  Dielectrical Properties of Breast Tissues

In the experiments made by Chaudhary et al, the dielectric properties of malignant
and normal surgically removed tissues were measured at frequencies between 3 MHz
and 3 GHz and the ratio of the relative permittivity and the conductivity of malignant

tissues to normal tissues were observed to be 5:1 and 4.7:1 respectively[11].

In another research carried out by Joines et al, the dielectric properties of tissues
excised from breasts and some other organs are measured over a frequency range
extending from 50 to 900 MHz and the results were supportive of those asserted by
[11]. The greatest dielectric contrast was observed between the normal and malignant
tissues of the mammary gland, where the average ratio of the relative permittivity
and the conductivity of malignant tissues to normal tissues were 6.4:1 and 3.8:1
respectively [12].



According to the measurements of the dielectric constants of fatty tissues and tumors
between 1 and 10 GHz made by our research group in Istanbul Technical University,
the ratio of the relative permittivity of malignant tissues to fatty tissues seemed to
vary between 7:1 and 10:1. Some of the experiment results are given in the
Appendix.

In addition to these, Surowiec at al measured the relative permittivity of diffusing
carcinoma and the surrounding tissue by an automatic network analyzer and an end-
of-line capacitor sensor at frequencies between 20 kHz and 100 MHz and matched
the results to Cole-Cole dielectric relaxation models. It was noticed that the center of
the tumor and the diffusing margins had significantly higher permittivity compared
to the peripheral tissues of the tumor. The high permittivity associated with the
diffusing margins of the tumor was attributed to the proliferation and it was predicted
that it would cause a large microwave scattering as a result of which small tumors
could be detected and identified using UWB radar [13].

Campbell and Land have examined four types of tissues: fatty, normal, benign and
malignant via a resonant cavity technique. They’ve put forward that it might be
impossible to define tumors as benign or malignant on account of their dielectric
similarities and also pointed out that there’d been a greater variance within the

normal tissues then had been claimed [14].

An extensive analysis of the dielectric properties of normal and cancerous tissues has
aimed to describe the dielectric properties of a great number of newly excised breast
reduction, biopsy, lumpectomy and mastectomy tissues across a broad frequency
range of 0.5- 20 GHz by firstly correlating the measured dielectric properties with
pathological analysis of the tissue samples, then applying a statistical analysis to
check the data integrity and finally adjusting the data to Cole-Cole representations.
Within this research, each sample was assigned to one of the three adipose tissue
groups due to the percentage of adipose it contains. These adipose tissue groups
were; Group 1(0-30% adipose tissue), Group 2, (31-84% adipose tissue) and Group 3
(85-100% adipose tissue). Median permittivity and conductivity curves were drawn
by calculating the matched values for every sample in the group at 50 equispaced
frequency points, and then the median values at specific frequencies were computed

for every group. After that, Cole-Cole equations were used to match the median

7



values calculated. When the results were compared to the previously published data
for normal tissue, the median dielectric curves for Group 3 adipose tissue were
noticed to be lower and the median dielectric curves for Group 1 adipose tissue were
noticed to be higher than expected. These differences are attributed to the large

heterogeneity in normal breast tissues [15], [16].

In the other studies, the normal tissue samples had been abducted from regions away
from the area with the tumor. As the tumors usually appear in glandular tissues, these
normal samples unsurprisingly have a higher adipose content compared to the
glandular tissue around the tumor. Therefore, the heterogeneity in the dielectric

properties of breast tissues had been underrated.

In the consecutive studies defining the dielectric properties of a breast tissue as a
function of the relevant tissue’s adipose content, the permittivity difference is
estimated as 8% at 5 GHz. Thus, realistic breast models are anticipated to provide
more accurate comprehension of the dispersion of the breast tissues due to the

variances in the electrical properties [2].

1.4 Breast Models Derived from MRI

Commonly used models in the microwave investigation techniques are the finite-
difference time-domain (FDTD) computational electromagnetic breast models,
which serve as beneficial tools in displaying the structural complexities, tissue
heterogeneity, and varying dielectric properties of the breast. FDTD models of other
body parts, specifically the ones composed of tissue types delineated well and
featuring spatially constant dielectric properties, are derived from MRIs handily and
are efficiently used. Following this approach, in several recent researches, numerical

breast phantoms have been derived from MRIs [2].

Lie et al constructed a FDTD model of the breast using MRI images of the breast.
Within the construction process, a high resolution breast MRI was taken while the
patient was in the prone position and a low resolution MRI was taken while the
patient was in the supine position. The low resolution MRI was used in horizontally

expanding and vertically compressing the high resolution MRI so that both scans’



shapes matched and the reformed MRI scan displayed the breast’s fibroglandular and

adipose tissues coherently.

In the MRI images used by Lie at al, the dark regions depicted the adipose tissue and
the ligh regions depicted the fibroglandular tissue. In the constructed models, these
tissue distributions were maintained by the assignment of dielectric values in
accordance with the corresponding MRI pixels’ intensities [17]. During the
assignment of the dielectric properties, the variance is taken as the upper bound of
breast tissue variability, i.e. 10% as assumed in [12], [6] and [11].

The modeling methodology Lie at al reinforced has been in use for several years [2].

Antennas

Adipose

Tumour fissue

x (cm)

Fibroglandular tissue

4 S 6
y (cm)

Figure 1.1: MRI based breast model where the tissues are apparent [2].

A recent research in the construction of the realistic breast models with electrical
properties was carried out at the University of Wisconsin, Madison. Within this
research, a collection of anatomically and dielectrically realistic 3-D numerical breast
phantoms of different geometry and radiographic density are derived from 3-D MRIs
of normal breast tissues whereas the frequency-dependent and tissue-dependent
dielectric properties are deduced from the Wisconsin—Calgary study [15],[16]. Breast
MRI voxel intensities were linearly mapped to dielectric properties of normal breast
tissue accurately using a two-component Gaussian mixture model (GMM). As in Li
et al.'s 2D FDTD model, the highly correlated nature of fibroglandular tissue
distribution in the breast was conserved and the model was claimed to be more

successful in representing the structural heterogeneity of normal breast tissue [2].

Nevertheless, accurate results are unlikely to be achieved in these derivations
because of the complex distribution of glandular, adipose, and fibro-connective
breast tissues and the remarkable heterogeneity of dielectric characteristics of
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normal breast tissues, but the presented numerical breast phantoms can serve as

representative breast models to be used in developing new microwave techniques for

breast cancer detection [2].

Depth (mm)

150 200
Span (mm)

Figure 1.2: A cross section of a MRI-based breast model showing the tissue
distribution [2].
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2. IMAGE PROCESSING METHODS

2.1 Histograms

The histogram of a digital image illustrates the amount of pixels associated with each

intensity level defined in the image. It is represented by the function h(r ) =n,

where r, denotes the relevant intensity level and n, denotes the number of pixels
associated with r. The domain of the intensity levels is [0,G] where G is 255,

65535 and 1.0 for images of class uint8, uint16 and double respectively. Assuming

that L intensity levels are defined in each of these intervals, r, would correspond to
the intensity level 0 and r, would correspond to the intensity level G . Additionally

G = L -1 holds for classses of uint8 and uint16.

Normalized histograms are obtained in a similar fashion, The normalized histogram

h(r, n, . . - . . .
(1) =—% is equivalent to the probability estimate of the intensity
n n

given by p(r)=
level r,

Histograms are generated by the imhist function of Matlab as:

h=imhist(f,b) where f denotes the input image and b denotes the number of
bins, in other words, the subintervals of the intensity axis and normalized histograms
can be attained as follows:

_ imhist(f,b)

where numel(f) returns the number of elements i.e. pixelsin f .
numel (f)

Furthermore, images can be translated into images with higher contrast and
augmented dynamic range by means of histograms. This process is known as

histogram equalization. The transformation function for a given image with the
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Kk n.
histogram p,(r;) is: s, =T(rk)=z pr(rj)z—J which converts the intensity value
i1 n
r; of the input image to the intensity value s, of the output image, and corresponds
to the cumulative density function of the intensity values.
As a result, the image is enhanced by expanding the intensity levels of the given

Image over a broader range. However, the result is not always successful.

At times, a processed image with a specified histogram can be practical to generate.
The method used for this process is called histogram matching. In order to generate

an image with a specified density, p,(z) a new variable, z denoting the intensity

levels of the image under construction is introduced.
H(z)= IOZ p,(w)dw=s (2.1)
z=H7(z)=H[T()] (2.1a)

where T (r) is the transformation function defined previously.

As H™exists for all valid p,(z)s and its components are non-zero, z intensity levels

can be found handily [18].

histeq function of Matlab can be used for both histogram equalization and histogram

matching processes.

2.2 Image Filtering

2.2.1 Homomorphic filter

During the production of the images, considerable shading effect occurs across the
field of view due to the associations between the objects, the illumination and the
imaging tools. For instance, the image’s brightness may be decreasing from the
center of the image to the edges of the field of view or from one side of the image to
its other side. Eliminating the effect of this shading, which might be caused by the
nonuniformity of the illumination or imaging tools, is often necessary for

consecutive image processing schemes.
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The following model can illustrate the shading effect:

b(x,y)=1,,(x,y)-a(x,y) where a(x,y) stands for the object, b(x, y) stands for the

image and 1,, stands for illumination.

For low concentrations,

a(x, y) =gain(x, y)-b(x, y) +offset(x, y) (2.2)
where offset(x, y) and gain(x,y) are the contributions of the imaging tool.

The resultant shading = gain(x, y)- I, (x, y)-a(x, y) +offset(x, y) (2.3)

I, (x, y)is ordinarily presumed to be changing moderately relative to a(Xx, y)

One of the two conditions where the intention is the estimation of shading terms
gain(x, y)- I, (x,y)and offset(x,y) needed to determine a(x,y) from c(x,y) is a
posteriori estimation. Under these circumstances, the only data available is the
recorded image and the aim is to remove the shading estimate from c(x,y). Low-
pass filtering, homomorphic filtering and morphological filtering are the methods
used for this purpose.

In homomorphic filtering, considering that offset(x,y)=0 and gain(x,y)-I,,(x,Y)
varies slowly compared to a(x, y), the logarithm of c(x,y) is taken to produce low

frequency and high frequency terms. Then, the shading is restrained by the high pass
filter applied to the logarithm of c(x, y). Finally, the image is retrieved by taking the

exponent of the high-pass filtered results. Consequently, the brightness over an
image is normalized, multiplicative noise is removed and the contrast is increased
[19]. Here is the description of this filtering process developed by Oppenheim and
Stockham [19]:

Step-1: c(x, y) =gain(x, y)- I, (X, y) (2.4a)
Step-2: In[c(x, y)]=In[gain(x, y)- I, (X, y)]+Ina(x, y)] (2.4b)

Here the first term varies slowly whereas the second term varies fast.
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Step-3: HighPass{In[c(x, y)I}= In[a(X, y)] (2.4c)

Step-4: a”(x, y) = eHorPesteea D (2.4d)

2.2.2 Mean filter

Mean filters smooth regional variations in an image and reduces the noise on account
of blurring. There are five types of mean filters: arithmetic, geometric, harmonic and

contraharmonic.
Arithmetic mean filter helps calculating the average values of the original image
g(x,y) in the region defined by S _which denotes the coordinate array of a

rectangular subimage window of size mxn. In the aftermath, the values of the

retrieved image at (X, y) corresponds to the arithmetic means of the pixel values of

the areas determined by S.

The mathematical representation for the filtered image is:

f)=— 3 o) (25)

(s,t)eSyy

Geometric mean filter computes the products of the pixels in the subimage windows,

. 1 : . :
raised to the power —as the retrieved values for all the pixels. Geometric mean
mn

filters are not more successful than arithmetic filters in smoothing, however they

preserve more details.

The mathematical representation for the filtered image is:

m (2.6)
f(x,y) =[ 11 g(s,t)}

(s,t)eSyy

Similarly, the mathematical expressions for Harmonic and Contraharmonic mean
filters, which are commonly used in salt-pepper noise elimination, are as shown

respectively as follows:
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F(x,y)= mn . (2.7)

(ss,, 9(s,1)

> g(s, )t (2.8)

(s,t)eSyy,

> g

(s,t)eSyy

f(xy)=

In the above equations, Q denotes the order of filter [20].

2.2.3 Laplace filter

Regional equalization of image contrast mentioned in section 2.1 yields increment in
regional contrast at boundaries as a result of which the edges become more vivid and
the image sharpens. However, there’re other methods of edge enhancement which
are more insensitive to overall brightness levels, noise, and the type or scale of detail

present than the equalization.

The conventional 3x3 Laplacian filter is:

-1 -1 -1
-1 48 -1
-1 -1 -1

This filter nullifies the gray level in a uniformly bright region or a region with a
uniform brightness gradient of an image by deducting the brightness values of the
pixels in the neighborhood from eight times the pixel in the center. In the emergence
of a discontinuity in the neighborhood such as a point or a line, the Laplacian gives
either a positive or a negative value due to the central point’s position relative to
edge. While displaying the result, commonly an average gray value, which is 128 for
an image where the gray values are depicted in the range [ 0, 255], in order to make
the zero points appear middle gray, and the brighter and darker values generated by
the Laplacian visible is accepted. Another approach is drawing the absolute value of
the result; however, this creates double lines causing clutter in both the human vision

and the consecutive processes along edges.
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Additionally, as the name of the filter hints, the Laplacian filter is based on
estimating the second derivative of brightness B , which does not vary due to
rotation, and therefore not susceptible to the direction of discontinuity. Consequently,
the points, lines, and edges are exposed, and the uniform and smoothly varying
regions are restrained. By varying the weights of the kernel, the image can be
sharpened. Here is a kernel that can be defined as a sharpening operator increasing

the image contrast at edges.

-1 -1 -1
-1 49 -1
-1 -1 -1

A clear image B can be retrieved by applying the Laplacian filter to the blurred
image. Laplacian filter can be interpreted as a high pass filter, which authorizes the
high frequencies a low pass filter would discharge or suppress in order to prevent the
variations in brightness of the neighboring pixels to penetrate the filter and dismisses

the low frequencies implying the gradual overall variation in brightness.

There are various kernels that can be used with the Laplacian operator. For instance,

an elementary kernel is:

0 -1 0
1 +4 -1
0 -1 0

The drawback of using simple kernels is the noise caused by the casual differences
between adjacent pixels; even the homogeneous parts of an image is highlighted with

this approach [21].

2.2.4 Edge detection filters

As well as smoothing, the capability of taking spatial derivatives of an image is a
basic operation of image processing. However, digitized images are discrete
functions a(x,y) of the integer spatial coordinates instead of being continuous
functions of the spatial variables; therefore, real spatial derivatives can only be

approximated in the case of image processing.

In addition to this, derivation causes the high frequency noise to be highlighted in the
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final image. This issue is handled with the combination of the derivative operation
with an operation covering up the high frequency noise, thus the smoothing operation

is combined with the derivative operation required.
As the image values vary in multiple directions, the directional derivatives needs

being considered. Thus, a random angle derivative matrix (filter) is identified as
follows:

[h,]=cos@-[h]+sing-[h ] (2.9)

where h, denotes a horizontal derivative matrix and h, denotes a vertical derivative

matrix.

Vector derivatives can also be written by using the gradient operator as:

AR AR AR T

where i, and i, are horizontal and vertical unit vectors respectively.

Furthermore, gradient direction and gradient magnitude are as follows:

{ (h, xa) }
w(Va) = arctan ( Y

h,xa) (2.11)

[Va]| = \[(h, x2)* +(h, xa)? (2.12)

As it can be seen from above, the results of these computations depends on the h,
and h,chosen. Gradient filters differ in the selection of these matrices. h_and h,

matrices used by basic derivative filters are:

[h]=[hT =[1-1] (2.13)
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[hJ=[n] =[10.-1] (2.14)

Within Sobel gradient filtering, the filters are dissociable, each deriving in one
direction by using (2.13) and smoothes in the orthogonal direction. The derivative

filters used by Sobel gradient filter are:

1 0 -1 11 T (2.15)
h]=22 0 —2|=2|2/s0
4 4
1 0 -1 1] -1
1 2 1 1] 1T (2.16)
[hy]=1 0 0 0l|=30 |s
4 4
1 -2 -1 -1

This filter is one of the most commonly used techniques, even though it requires a

modest amount of computation to perform correctly.

Similar to Sobel gradient filters, Prewitt gradient filters are dissociable and each
derives in one direction by utilizing (2.14). However, they use a uniform filter while

smoothing in the orthogonal direction [18].

The derivative filters used by Prewitt gradient filter are:

T

10 -1 1 1 (2.17)
(h]=2{1 0 -1|=3[1]s[0
3 3
1 0 -1 1 -1

1 1 1 1NMMnT (2.18)
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3. MATHEMATICAL METHODS

3.1 Gaussian Distribution

Gaussian distribution function can be used when the number of events or features are
extremely high. It is a continuous function approximating the accurate binomial

distribution of events or features.
The probability density functions of the Gaussian distribution with mean p and

standard deviation o is:

L e, 61
X; 1,0) = e
P p4,0) =—5=

The cumulative distribution function for the Gaussian distribution with mean p and

standard deviation o is:

¢z, u,0)= 'Z[ p(X; &, o)dx (3.2)

The probability density function for the standard Gaussian distribution where 4 =0

and o=1is:

1 f e
p(x) = ﬁe

The cumulative distribution function for the standard Gaussian distribution is:

2 (3.4)
#(2) = | p(x)dx
In general, large numbers of independent random variables (approximately) has a

normal distribution.
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3.2 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a probability density function represented by

the weighted sum of N component Gaussian densities as follows:

p(x| )= W (x| 4. ,) (35)

where x is a K dimensional data vector(standing for measurements or features), w;,
i=12,..N, are the mixture weights and g(x|z,2;) for i=12..N are the

Gaussian densities of mixture components. For the i component, the Gaussian

density is of the form:

1 {50 m) 50} (3.6)

g(Xlﬂi,Zi)=We

where g is the mean vector and 2, is the covariance matrix. The mixture weights

satisfy:

3.7)

N

> w =1
i=1
The parameters of the Gaussian mixture model are denoted by: A ={w,, 2,2} for

i=12,..N

Several different configurations are thinkable for this model. For instance, the

covariance matrices >.. can be either full rank or restrictedly diagonal, parameters

can be mutual, or tied, among the Gaussian components. The amount of data and the

usage of the GMM are the decisive factors in the determination of a certain model.

Even if the full covariance matrices are not used, the correlations between
statistically dependent features can be illustrated as the linear combination of
Gaussians with diagonal covariance basis, as using a set of M Gaussians with full
covariance matrix is equivalent to using a larger set of Gaussians with diagonal

covariance.
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Besides the smooth overall distribution fit provided, the multi-modality of the
density is distinctly given by the parameters of GMM. An example for this multi-

modality attribution is shown in Figure 3.1

The most well-known and substantial method used in the estimation of GMM

parameters is Maximum Likelihood (ML) estimation.

With training vectors X ={x,,X,,...,X; }and a GMM configuration given, estimating
the parameters of the GMM s achieved by maximizing the likelihood of the given
GMM training data. Considering that the vectors are linearly independent, the GMM
likelihood can be shown as:

p(X|2) =f[ p(%,4) (3.8)

As the likelihood is not a linear function of the GMM parameters, direct
maximization is impossible. Nevertheless, parameters can be estimated iteratively by
utilizing a special case of the EM algorithm. At every iteration, the likelihood is
ensured to increase monotonically and a new model is assigned to be the initial
model until a convergence to a local maximum of the likelihood function is achieved.
Here are the modeling parameters for each GMM component at each iterative step

assuring a monotonic augmentation in the model’s likelihood [23]:

W =2 > Pr(i[%, ) (3.9)
SPH(i | %, A) - % (3.10)
H = t=lT
> Pri1x,2)
3 Pr(i | %, 1) X! (3.11)
of == — 4

iPr(th,ﬂ)
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Figure 3.1: (a) Histogram (b)Unimodal Gaussian (c¢) Gaussian Mixture Density
3.3 Piecewise Cubic Spline Interpolation

Splines can be interpreted as thin flexible strips attached with pins, which stand for
the knots of the spline in the mathematical definition, from mechanical point of view.
As, in the mechanical model, the slope and the bending moment is continuous at the
pins, the first and the second derivatives are continuous at the knots, namely, the data
points. Similarly, as the bending moment vanishes at the pins at edges, the second
derivatives also vanish at the two end data points. Because of these similarities
between the spline curves and their corresponding mechanical models, these curves

are called natural cubic splines [24].

While fitting a straight line to each interval between two successive points in a given

data set, (x,f) and (x_,, f,,;), only the function values at the data points can be

preserved on each side of the interval. Additionally, higher order polynomials are
not very effective in interpolation, too. The major drawback of polynomial
interpolation is in the subintervals, especially between the first two and last two data
points; the function varies extremely, overshooting the changes in the original data.
Therefore, full-degree polynomial interpolation does not have a widespread use in
fitting curves and data; instead, it is mainly used in the enhancement of other
numerical techniques. Furthermore, polynomials of high degree are prone to
oscillation dreadfully between the data points whereas smoother results are likely to
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be reached by using a cubic interpolant satisfying the continuity constraints in

derivatives.

Each partition of a cubic spline curve is a cubic polynomial. Nevertheless, splines are
less likely to oscillate between data points than the polynomials. Therefore, cubic

splines are the most commonly used curves for this purpose [24], [25].

For a cubic spline spanning n knots, each of the n—1 cubics is in the following

form:

f()=a +(x=x)b +(x=x) ¢ +(x=x) d, (3.12)

Thus, 4n—4 unknowns are needed to be found.

Using the derivative constraints and the nullity of curvature of natural splines at the

two end points, the system becomes determined with 4(n—1) equations.

Fori=12,.n-2

fi(x)=V (3.13)
f(X.) =Y., fori=12.n-1 (3.14)
f (6a) = fa(X0) (3.15)
fi (%) = fla (%) (3.16)
f, (%)= f,.(x)=0 (3.17)

On either side of a knot, although the second derivatives have different formulas,

because of the continuity, they have the same value at the knots, i.e.

f (%) = f.(x) =k where k, =k =0 and k;is unknown for i=1,2,..n-1

In order to write the second derivative explicitly, Lagrange two-point interpolation

can be used as follows:
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_ X=X - X=X
l,.. () where 1, (x) = Y —x and 1., (x) X . —X (3.18)

i i+1 i+1 i

fi:'i+l(x) =kl () +k

i+1

ki (X=X,1) — K, (X=X)
X — X

fi :'i+1 (X) =
(3.19)

By integrating with respect to x,

(3.20)

k. (x— Xi+1)3 =k, (X= Xi)3 + AKX —X%,,) = B(X=x)

fiia(¥) = 6(% —%.1)

Y. k.
A=—"1——1(X —X
X — X 6( I |+1)

i i+1

yi+1 I(i+1
B=—H T (x —x
Xi —Xi+1 6 ( | |+1)

Considering the condition:

fi,i+1(x) = %{M_ (X_ Xi+l)(xi - Xi+1):|
3 - 3.21
—%{M—(x— X)(% - xm)} -

X — X
+ Yi (X - Xi+l) B Yi+1(x B Xi)
X = Xig

In order to find the second derivative values at the interior knots, the first derivative

constraint is used:
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f"—1 [ (X) = fi‘i+1(x' )

— (3.22)
{B(X Xi1)” ~(% —Xm)} a1 {3(x X)’ _(x —Xm)} Yi = Vin
° % 6 X = Xin X = X1
= I61 |:3(X X ) _( —1_X)i| |:3(X —1) (Xi_l_xi)} y|_1 Vi
X XI— - X| XI— — XI
ﬁ[g(xi )= (6 — %)+ K 2 (5 x,.) G ha Ky (3.22a)
XI - Xi+1 6
[3(XI LX) = (% =X )]+ Yii— ))(/u
(3.22b)

k[Z(x X'+1)]+kl+1( |+1)+6yf_)}(ll+l kll(Xi_Xil)_ki|:2(xi1_Xi)]+6—i::ii

2ki (Xi-l |+1)+kl+l(x X|+1) kl l(Xi _Xi—l):6|:i:_i:)>(/.i - z: :3(/::11:|

k h.|.2k 2h+k|+1h 6|:y| 1h y| _ y| hy|+lj|

6
ki, +4k; +4k;, = P (Ve =Y = Yin)

Here there are n—2 equations for n knowns. “Not-a-knot “strategy is
commonlyused around the ends of the interval to make the system determined. This
strategy yields the reduction of the number of unknowns by using single cubics on
the first two and last two subintervals [26].

Splines can be fit to a given data set by using the spline function written by Carl De

Boor in MATLAB.
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4. MODELLING

4.1  Methodology

In the first step of this study, the MRI breast images provided from Euromed
Radiology Centre and Maltepe University were processed morphologically in order to
reduce imaging artifacts. Then, in the second step, the Gaussian distribution of the
two main breast tissues, namely, fibroglandular and fatty tissues, were constructed to
ascertain the distinctive intensity values for these tissues. After that, the piecewise
mapping parameters: the minimum, maximum, intermediate and mean intensity
values of the two main tissue types were computed. Additionally, the intensity
intervals determined by the minimum, maximum, intermediate and mean intensity
values were matched with seven distinct tissue types. Finally, the intensity values
were mapped to the dielectric constants and conductivity values via piecewise linear

mapping and cubic spline interpolation.

4.2  MRI Data Manipulation

At this stage, edge detection methods and smoothing operations are applied to the
magnetic resonance images provided from the radiology center and the hospital stated

previously.

Firstly, the details of images are observed by using the Sobel or Prewitt gradient
filters and then via homomorphic filtering the low frequency spatial variations are
removed in order to suppress the slowly varying intensity gradients, which occur
especially in the tissues besides the coils and are caused by the nonuniform magnetic
fields. Figure 4.4, Figure 4.5 and Figure 4.6 illustrates the filtered versions of the MRI

images, “z”, ”’e” and ”m” given in Figure 4.1., Figure 4.2 and Figure 4.3

Then, the image is masked using a binary mask in order to acquire more accuracy
after the application of several morphological operations. The images shown in Figure
4.7, Figure 4.8 and Figure 4.9 are the resulting images of these imaging processes.
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Apart from these, Figure 4.10-4.12 and Figure 4.13-4.15 respectively show the results
of the Sobel and Prewitt edge detection filters applied to the MRI images and Figures
from 4.16 to 4.18 show the results of the Laplace filter application.

Original Image

Figure 4.1: MRI image Figure 4.2: MRI image Figure 4.3:MRI image

(Y33 [IPNA) 13 2

Z € m

Filtered Image Fitered Image Filtered Image

Figure 4.4: Filtered Figure 4.5: Filtered Figure 4.6: Filtered
Image “z” Image “e” Image “m”
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Filtered and Masked Image

Figure 4.7: Filtered &
Masked Image “z”

Sobel Edge Detection

Figure 4.10:Sobel
Edge Detection Filter
applied to “z”

Prewitt Edge Detection

Figure 4.13: Prewitt
Edge Detection Filter
applied to “z”

Filtered and Masked Image Filtered and Masked Image

Figure 4.8: Filtered & Figure 4.9: Filtered &
Masked Image‘e” Masked Image “m”

Sobel Edge Detection Sobel Edge Detection

Figure 4.11:Sobel Edge Figure 4.12:Sobel
Detection Filter applied to Edge Detection Filter
“e” applied to “m”

Prewitt Edge Detection Prewitt Edge Detection

Figure 4.14:Prewitt Figure 4.15:Prewitt
Edge Detection Filter Edge Detection Filter
applied to” e” applied to “m”
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Laplace Filter

applying laplace filter

Laplace Filter

Figure 4.16: Laplace Figure 4.17: Laplace Figure 4.18: Laplace Filter
Filter applied to “z” Filter applied to “e” applied to “m”

4.3 The Construction of Breast models

At this stage, the minimum, maximum, intermediate and mean intensity values of the
two main tissues are computed by using the histograms of the images and the intensity
intervals are mapped to the dielectric intervals via both piecewise linear and cubic
spline interpolation.

Firstly, the tissues are dissociated depending on the expected diversity between their
intensity levels by utilizing the threshold values determined in accordance with their

Gaussian distributions.

Then, the minimum, maximum, intermediate and mean intensity values of the two
distinct tissues, namely, fibroglandular tissue and fatty tissue, are derived from the

Gaussian distribution model.

After that, the intensity intervals are matched with the appropriate tissue classes and
the intensity values of each interval are mapped to the dielectric constant and
conductivity values of the relevant tissue stated by [8] firstly by linear interpolation

and then by cubic spline interpolation.

Furthermore, the dielectric intervals are also determined by using 10% variances
within the same tissue groups and 15% variance between the distinct tissue groups
(fibroglandular and fatty tissues) to illustrate an alternative approach for modeling.
Within this approach, the dielectric and conductivity values stated by Converse et al

are assumed valid [28] instead of the dielectric intervals determined by [8].
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4.3.1 Piecewise linear interpolation

At this stage, the intensity values in the intervals determined depending on the
Gaussian distributions of the fibroglandular and fatty tissues similarly to done in [8],

are linearly mapped to the corresponding tissues’ dielectric values.

Here are the eight mapping parameters taken as the edges of the seven intensity
intervals, which correspond to the seven designated breast tissues: fibroglandular-1,
fibroglandular-2, fibroglandular-3, transitional, fatty-1, fatty-2 and fatty-3, for MRI
images where the fatty regions have low and glandular regions have high intensity

values:

m, =inf(x|x € B) 4.1)
m, =, — 0, (4.2)
m,, = i, +0, 4.3)
M, =u, +o; (4.4)
m,, = u; —oy (4.5)
M, =sup(x|x € B) (4.6)

where B denotes the interior region of the breast.

Expected values and variances are firstly computed by means of the basic methods

separately:

Hy =D s X Py (X) (4.7)
He =2, X P (X) (4.8)
0y =2 s, (X=144)" Py (X) (4.9)
0" =2 e (X= )P (0) (4.10)
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where p,(x) and p,(x)denote the probabilities of glandular and fatty tissues
respectively.
Secondly, these parameters are obtained from the two-component GMM, which

utilizes the EM algorithm to estimate the mixture parameters, by using the

gmdistribution function of Matlab. The rest of the parameters are derived from the

Gaussian distribution as before.

The histograms and Gaussian distributions of the glandular and fatty tissues of each

breast sample are displayed in Figures 4.19, Figure 4.20 and Figure 4.21.

Histogram and the Gaussian Curves of Glandular & Fatty Tissues
2000 T T T T T T
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o

Figure 4.19: Histogram of MRI image “e” is shown by the blue curves and the
glandular and fatty tissues’ Gaussian curves are denoted by green and red curves
respectively.
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Histogram and the Gaussian Curves of Glandular & Fatty Tissues
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Figure 4.20: Histogram of MRI image “z” is shown by the blue curves and
the glandular and fatty tissues” Gaussian curves are denoted by green and red
curves respectively.

Histogram and Gaussian Distributions
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Figure 4.21: Histogram of MRI image” m” is shown by the blue curves and
the glandular and fatty tissues’ Gaussian curves are denoted by green and red
curves respectively.

The resulting models obtained by applying this mapping to the previously shown MRI
images are illustrated in the figures below. Figures 4.22, Figure 4.23, Figure 4.26,
Figure 4.27, Figures 4.30 and Figures 4.31 show the resulting models obtained by
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using the the dielectric intervals in accordance with [8]. Figure 4.24, Figures 4.25,
Figures 4.28, Figures 4.29, Figures 4.32 and Figures 4.33 show the resulting models
obtained by using the dielectric intervals computed by applying 10% and 15%
variances to the values stated by [28].

Figure 4.22: Dielectric distribution Figure 4.23: Conductivity
for MRI image “z" distribution for MRI image “z"

Dielectric Constant Distribution Conductivity Distribution

Figure 4.24: Dielectric distribution Figure 4.25: Conductivity
for MRI image “z" distribution for MRI image “z"

Dielectric Constant Distribution Dielectric Constant Distribution

Figure 4.26: Dielectric distribution Figure 4.27: Conductivity
for image "e" distribution for MRI image “e”
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Figure 4.28: Dielectric distribution Figure 4.29: Conductivity
for MRI image “e" distribution for MRI image “e"
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Figure 4.30: Dielectric distribution Figure 4.31: Conductivity
for MRI image “m" distribution for MRI image “m"
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Figure 4.32: Dielectric distribution Figure 4.33: Conductivity
for MRI image “m" distribution for MRI image “m"

35



4.3.2 Cubic spline interpolation

This stage differs from the previous stage in the way the intensity values are mapped
to the corresponding tissues’ dielectric values. Instead of using a piecewise linear
function, piecewise cubic splines are occupied to present the relation between the

MRI intensity values and dielectric constant and conductivity values.

The mapping parameters are firstly assigned by means of both customary methods
and secondly by using the GMM as done in the piecewise linear interpolation
application.

Moreover, as done in the previous technique two different dielectric intervals are
used. Figure 4.34, Figure 4.35, Figure 4.38, Figure 4.39, Figure 4.42 and Figure 4.43
show the results obtained by using the dielectric intervals appropriate to the
measurements made by [8] and Figure 4.36, Figure 4.37, Figure 4.40, Figure 4.41,
Figure 4.44 and Figure 4.45 show the models obtained by applying 10% and 15%

variances to the values stated by [28] conveniently.

Figure 4.34: Dielectric distribution Figure 4.35: Conductivity
for MRI image “z” distribution for MRI image “z”
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Dielectric Constant Distribution Conductivity Distribution

Figure 4.36: Dielectric distribution

X Figure 4.37: Conductivity distribution
for MRI image “z”

for MRI image “z”
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Figure 4.38: Dielectric distribution Figure 4.39: Conductivity distribution
for MRI image “e” for MRI image “e”
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Figure 4.40: Dielectric distribution Figure 4.41: Conductivity distribution
for MRI image “e” for MRI image “e”
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Dielectric Constant Distribution Conductivity Distribution

Figure 4.42: Dielectric distribution Figure 4.43: Conductivity
for MRI image “m” distribution for MRI image “m”
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Figure 4.44: Dielectric distribution Figure 4.45: Dielectric distribution for
for MRI image “m” MRI image “m”

4.4 Results and Discussion

As it can be seen from Figure 4.22 to Figure 4.45, piecewise linear interpolation and
cubic spline interpolation give similar results. However, piecewise linear interpolation
seem to be more powerful in exhibiting the dispersive nature of the breast tissues as
the dielectric values differ more than they do in the cubic spline interpolation. On the
other hand, cubic spline interpolation may be more useful in determining the location
of the regions with high dielectric values, which also have higher probability of being

suspicious or cancerous, as the contrast between the tissues are sharply illustrated.

Moreover, using the expected values and variances obtained from GMM did not give
consistent results. It is assured that the estimated parameters of GMM via the EM

algorithm vary depending on the initial parameters, thus, the consequent models
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differ. Therefore, distinct Gaussian distributions for both of the main tissues, which
are illustrated in Figure 4.19, Figure 4.20 and Figure 4.21, are used in estimating the
mapping parameters indirectly. Additionally, these graphs help in perceiving whether
a given breast model is composed mostly of fatty or glandular tissues. For instance, it
can be presumed that the MRI image denoted by “m” is mostly glandular whereas the
MRI images denoted by “e” and “z” have more moderate distributions by having a
look at the Gaussian curves in the histograms and these presumptions are compatible
with the reports of the clinics.

Furthermore, two different dielectric intervals are considered. Firstly, the dielectric
constant and conductivity values at the boundaries of the tissues computed at 6 GHz
by [8] are used in the definition of the dielectric range and then these boundaries are
computed by applying the commonly accepted variance values (10% and 15%) to the
dielectric constant and conductivity values stated by [28] for 6 GHz. It’s been shown
that there hasn’t been convenience between the dielectric values obtained by different

researches.

According to the report on the MRI image denoted by “e”, there is a solid, localized,
hypoechogenic lesion in two o’clock radial direction and scattered tubular
hypoechogenic areas in four o’clock radial direction [26]. In all the models obtained
for the breast image “c” (See Figure 4.26, Figure 4.27, Figure 4.28, Figure 4.29 and
Figure 4.38, Figure 4.39, Figure 4.40, Figure 4.41), these areas correspond to the
regions with high dielectric values, in other words, suspicious regions as well.
Nevertheless, cubic spline approach provides more accuracy in the boundaries of

these regions.

Additionally, in the report for the MRI image “z”, it’s stated that there is a solid lesion
of size 11x10 mm with spicular contours, localized in 11 o’clock radial direction
exhibiting malignant properties and there are two similar lesions which may possibly
be malignant in 1 and 6 o’clock radial directions. Moreover, multiple small cysts of
varying sizes are present [26]. For the slice processed as “z”, these results are
presumable, but more slices should be assessed for a further interpretation. On the
other hand, this also shows the expected difference between the two interpolation
techniques. As piecewise linear interpolation is tending to disperse the dielectric
values, the severity of the situation is hard to guess from Figure 4.22 - Figure 4.25
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whereas cubic spline approach has given more vivid results in Figure 4.34 - Figure
4.37.

Furthermore, the report for MRI image “m” asserts that the breast contains multiple
small circular lesions with radius smaller or equal to 2 cm and cysts smaller than 2 or
3 cm [27]. Figure 4.30 — Figure 4.33 and Figure 4.42 - Figure 4.45 are in line with
these assertions as they all present highly heterogeneous dielectric distributions.
Furthermore, the circular structure of the lesions and cysts are also visible in the
images, especially in Figure 4.42 — Figure 4.45.
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S. CONCLUSION

The major purpose of this study was to investigate the variations in the electrical
properties of breast tissues to exhibit the heterogeneity of the breast and the
dispersive nature of the dielectric properties across the breast tissues. For this reason,
MRI based breast models which will assist the research in breast cancer detection
were constructed. Several filters were applied to the MRI images to remove noise
and obtain more clear images for further analysis. Then by plotting the histograms of
each image, the distribution of the intensity values and accordingly the distribution of
the dielectric values were demonstrated. After that, Gaussian distributions of each of
the two baseline tissues were used to identify the tissue types due to the intensity

values in the images.

Moreover, several methods were tested in mapping the intensity values to dielectric
values. For instance, the mapping parameters were derived in two ways. Firstly, they
were computed by means of the Gaussian distribution for both of the basic tissues
and secondly, they were computed by constructing GMM models. When the results
were compared, the first way for determining the coefficients seemed to give more
stable, rapid and realistic results. On the other hand, two different interpolations,
namely, piecewise linear interpolation and cubic spline interpolation, were used to
transform the intensity values into dielectric values. It is deduced that piecewise
linear interpolation is more advantageous than cubic spline interpolation in
demonstrating the dispersive nature of the breast tissues. However, cubic spline
interpolation may be superior to piecewise linear interpolation in determining the
locations of the regions with high dielectric values, which also have higher
probability of being suspicious or cancerous, as it results in greater contrast between

the tissues and provides more accuracy in the transition boundaries.
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APPENDICES

APPENDIX A.1 : Fatty & Cancerous Breast Tissue Measurements, Acquired
from Electromagnetics Research Group, Istanbul Technical University
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Figure A.1 : Fatty & Cancerous Breast Tissue Dielectric Constant Measurements
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